Regular subsequences in finite words

Andrew Ryzhikov

LIGM, Université Paris-Est

Words and Complexity Workshop Lyon, 21 February 2018

Definitions: linear words

A *linear word* (or just a word) is a finite sequence of symbols over some alphabet. Ex.: 01110011.

A subsequence of a linear word $w = a_1 \dots a_n$ is a word $w' = a_{i_1} \dots a_{i_m}$ with $i_1 \le \dots \le i_m$. Ex.: 0001 is a subsequence of 01110011.

Definitions: circular words

A *circular word* is a class of equivalence of linear words under rotations.

A linear word is a *subsequence* of a circular word if it is a subsequence of some linear word from the corresponding equivalence class (some its *linear representation*).

10001110 is a subsequence.

Definitions: palindromes and antipalindromes

A word $w = a_1 \dots a_n$ is a *palindrome* if $a_i = a_{n-i}$ for any $1 \le i \le \frac{n}{2}$. Ex.: 1000001.

A binary word $w = a_1 \dots a_n$ is an *antipalindrome* if $a_i \neq a_{n-i}$ for any $1 \le i \le \frac{n}{2}$. Ex.: 10001110.

The reversal w^R of a word $w = a_1 \dots a_n$ is the word $a_n \dots a_1$. Ex.: $000111^R = 111000$.

Weak antipalindromic conjecture

Conjecture (Lyngsø and Pedersen, 1999)

Every binary circular word of length n divisible by 6 with equal number of zeros and ones has an antipalindromic subsequence of length at least $\frac{2}{3}n$.

Weak antipalindromic conjecture

Conjecture (Lyngsø and Pedersen, 1999)

Every binary circular word of length n divisible by 6 with equal number of zeros and ones has an antipalindromic subsequence of length at least $\frac{2}{3}n$.

Strong antipalindromic conjecture

Conjecture (Brevier, Preissmann and Sebő)

Let w be a binary circular word of length n divisible by 6 with equal number of zeros and ones. Then w can be partitioned into two linear words w_1, w_2 of equal length, $w = w_1 w_2$, having subsequences s_1, s_2 such that $s_1 s_2$ is an antipalindrome and $|s_1 s_2| = \frac{2}{3}|w|$.

Strong antipalindromic conjecture

Conjecture (Brevier, Preissmann and Sebő)

Let w be a binary circular word of length n divisible by 6 with equal number of zeros and ones. Then w can be partitioned into two linear words w_1, w_2 of equal length, $w = w_1 w_2$, having subsequences s_1, s_2 such that $s_1 s_2$ is an antipalindrome and $|s_1 s_2| = \frac{2}{3}|w|$.

Strong antipalindromic conjecture

Conjecture (Brevier, Preissmann and Sebő)

Let w be a binary circular word of length n divisible by 6 with equal number of zeros and ones. Then w can be partitioned into two linear words w_1, w_2 of equal length, $w = w_1 w_2$, having subsequences s_1, s_2 such that $s_1 s_2$ is an antipalindrome and $|s_1 s_2| = \frac{2}{3} |w|$.

Checked up to n = 30. The word $w = 0^{i}1^{i}(01)^{i}1^{i}0^{i}$ shows tightness.

Weak palindromic conjecture

Conjecture

Every binary circular word of length n has a palindromic subsequence of length at least $\frac{3}{4}n$.

Weak palindromic conjecture

Conjecture

Every binary circular word of length n has a palindromic subsequence of length at least $\frac{3}{4}n$.

Checked up to n = 30. The word $0^{i}(10)^{i}1^{i}$ shows tightness.

Strong palindromic conjecture

Conjecture

Let w be a binary circular word of length n divisible by 6. Then w can be partitioned into two linear words w_1, w_2 of equal length, $w = w_1 w_2$, having subsequences s_1, s_2 such that $s_1 = s_2^R$ (that is, $s_1 s_2$ is a palindrome) and $|s_1 s_2| = \frac{2}{3}|w|$.

Strong palindromic conjecture

Conjecture

Let w be a binary circular word of length n divisible by 6. Then w can be partitioned into two linear words w_1, w_2 of equal length, $w = w_1 w_2$, having subsequences s_1, s_2 such that $s_1 = s_2^R$ (that is, $s_1 s_2$ is a palindrome) and $|s_1 s_2| = \frac{2}{3} |w|$.

Checked up to n = 30. The word $0^{2i}(10)^i 1^{2i}$ shows tightness.

Two cuts conjecture

Conjecture

For any word w of length n divisible by 4 and any its linear representation $w = w_1 w_2 w_3 w_4$, the maximum of the lengths of longest palindromic subsequences of $w_1 w_2 | w_3 w_4$ and $w_2 w_3 | w_4 w_1$ is at least $\frac{1}{2}n$.

Two cuts conjecture

Conjecture

For any word w of length n divisible by 4 and any its linear representation $w = w_1 w_2 w_3 w_4$, the maximum of the lengths of longest palindromic subsequences of $w_1 w_2 | w_3 w_4$ and $w_2 w_3 | w_4 w_1$ is at least $\frac{1}{2}n$.

Two cuts conjecture

Conjecture

For any word w of length n divisible by 4 and any its linear representation $w = w_1 w_2 w_3 w_4$, the maximum of the lengths of longest palindromic subsequences of $w_1 w_2 | w_3 w_4$ and $w_2 w_3 | w_4 w_1$ is at least $\frac{1}{2}n$.

Checked up to n = 30. The word $0^{i}(10)^{i}1^{i}$ shows tightness.

Proposition

Every binary word of length n without three consecutive equal letters has a palindromic subsequence of length at least $\frac{2}{3}(n-2)$. The same is true for an antipalindromic subsequence.

001001011011

Proposition

Every binary word of length n without three consecutive equal letters has a palindromic subsequence of length at least $\frac{2}{3}(n-2)$. The same is true for an antipalindromic subsequence.

001001011011

Conjecture

Let *w* be a word of length *n* over an alphabet of size k, $k \ge 2$. If *w* has no two consecutive equal letters, then it has a palindromic subsequence of length at least $\frac{1}{k-1}(n-1)$.

0101010101 01010121212 0101012121232323

Conjecture

Let w be a word of length n over an alphabet of size k, $k \ge 2$. If w has no two consecutive equal letters, then it has a palindromic subsequence of length at least $\frac{1}{k-1}(n-1)$.

0101010101 01010121212 0101012121232323

Proved for k = 2,3. Checked up to n = 21 for k = 4 and n = 18 for k = 5. The word which is a concatenation of the word $(a_1a_2)^i$ and words $(a_{\ell+1}a_{\ell})^{i-1}a_{\ell+1}$ for $1 < \ell < k-1$ shows tightness.

Conjecture

Let *w* be a word of length *n* over an alphabet of size k, $k \ge 2$. If *w* has no two consecutive equal letters, then it has a palindromic subsequence of length at least $\frac{1}{k-1}(n-1)$.

0101010101 01010121212 0101012121232323

Proved for k = 2, 3. Checked up to n = 21 for k = 4 and n = 18 for k = 5. The word which is a concatenation of the word $(a_1 a_2)^i$ and words $(a_{\ell+1} a_{\ell})^{i-1} a_{\ell+1}$ for $1 < \ell < k-1$ shows tightness.

- ► Structure of extremal examples (there are more of them).
- ► Circular case for non-binary alphabet.
- ► Non-binary antipalindromes?
- Relations between the conjectures.
- ► Any other questions about the combinatorics of subsequences (almost nothing is known).

- ► Structure of extremal examples (there are more of them).
- ► Circular case for non-binary alphabet.
- ► Non-binary antipalindromes?
- Relations between the conjectures.
- ▶ Any other questions about the combinatorics of subsequences (almost nothing is known).

- ► Structure of extremal examples (there are more of them).
- ► Circular case for non-binary alphabet.
- ► Non-binary antipalindromes?
- Relations between the conjectures.
- ► Any other questions about the combinatorics of subsequences (almost nothing is known).

- ► Structure of extremal examples (there are more of them).
- ► Circular case for non-binary alphabet.
- ► Non-binary antipalindromes?
- ► Relations between the conjectures.
- ▶ Any other questions about the combinatorics of subsequences (almost nothing is known).

- ► Structure of extremal examples (there are more of them).
- ► Circular case for non-binary alphabet.
- ► Non-binary antipalindromes?
- ► Relations between the conjectures.
- ► Any other questions about the combinatorics of subsequences (almost nothing is known).

Thank you! Questions? (Or answers?)