Avoidability of Binary Patterns in the Abelian Sense

Matthieu Rosenfeld

February 22, 2018

A **pattern** *P* is a word over an alphabet Δ .

A word $w \in \Sigma^*$ **realizes** the pattern $P \in \Delta^*$ iff there are $u_1, \ldots, u_{|P|} \in \Sigma^+$ such that $w = u_1 \ldots u_{|P|}$ and $\forall i, j$ $P_i = P_j \implies u_i = u_j$.

Example

A **pattern** *P* is a word over an alphabet Δ .

A word $w \in \Sigma^*$ **realizes** the pattern $P \in \Delta^*$ iff there are $u_1, \ldots, u_{|P|} \in \Sigma^+$ such that $w = u_1 \ldots u_{|P|}$ and $\forall i, j$ $P_i = P_j \implies u_i = u_j$.

Example A = B = AO = 102 = 102 = O realizes the pattern ABBA.

A word w avoids a pattern P if no factor of w realizes P.

A **pattern** *P* is a word over an alphabet Δ .

A word $w \in \Sigma^*$ **realizes** the pattern $P \in \Delta^*$ iff there are $u_1, \ldots, u_{|P|} \in \Sigma^+$ such that $w = u_1 \ldots u_{|P|}$ and $\forall i, j$ $P_i = P_j \implies u_i = u_j$.

Example

A word w avoids a pattern P if no factor of w realizes P.

Example

A **pattern** *P* is a word over an alphabet Δ .

A word $w \in \Sigma^*$ **realizes** the pattern $P \in \Delta^*$ iff there are $u_1, \ldots, u_{|P|} \in \Sigma^+$ such that $w = u_1 \ldots u_{|P|}$ and $\forall i, j$ $P_i = P_j \implies u_i = u_j$.

Example

A word w avoids a pattern P if no factor of w realizes P.

Example

• 0120201 contains a realization of AA,

A **pattern** *P* is a word over an alphabet Δ .

A word $w \in \Sigma^*$ **realizes** the pattern $P \in \Delta^*$ iff there are $u_1, \ldots, u_{|P|} \in \Sigma^+$ such that $w = u_1 \ldots u_{|P|}$ and $\forall i, j$ $P_i = P_j \implies u_i = u_j$.

Example

A word w avoids a pattern P if no factor of w realizes P.

Example

- 0120201 contains a realization of AA,
- 0001001 avoids AABB.

Question

What is the smallest *n* such that there is an infinite word avoiding AA over *n* letters?

Question

What is the smallest *n* such that there is an infinite word avoiding AA over *n* letters?

$$\varepsilon$$
 0 00 010 0100 0101
 ε 1 10 100 101
 $1 \sim 100$ 101 1010

 \Rightarrow AA is not avoidable over 2 letters.

Question

What is the smallest *n* such that there is an infinite word avoiding AA over *n* letters?

$$\varepsilon$$
 0 00 010 0100 0100
 ε 1 10 100 1010
1 10 101 1010 1010

 \Rightarrow AA is not avoidable over 2 letters.

Theorem (Thue, 1906)

There is an infinite ternary word which avoids AA.

Question

What is the smallest *n* such that there is an infinite word avoiding AA over *n* letters?

$$\varepsilon$$
 0 00 010 0100 0100
 ε 1 10 100 1010
1 10 101 1010 1010

 \Rightarrow AA is not avoidable over 2 letters.

Theorem (Thue, 1906)

There is an infinite ternary word which avoids AA.

Theorem (Thue 1906)

There is an infinite binary word (the Thue-Morse word) which avoids AAA.

Binary patterns [P. Goralcik and T. Vanicek, 1991]

Figure 1: Classification of binary patterns by avoidability.

Every pattern that does not appear in this tree is avoidable over the binary alphabet.

Abelian equivalence and patterns

Definition

Two words u and v are **abelian equivalent**, denoted by $u \sim_a v$, if v is a permutation of u.

aaabb \sim_a ababa, cabac \sim_a abcac.

Abelian equivalence and patterns

Definition

Two words *u* and *v* are **abelian equivalent**, denoted by $u \sim_a v$, if *v* is a permutation of *u*.

aaabb \sim_a ababa, cabac \sim_a abcac.

Definition

A word $w \in \Sigma^*$ realizes in the abelian sense the pattern $P \in \Delta^*$ if there are $u_1, \ldots, u_{|P|} \in \Sigma^+$ such that $w = u_1 \ldots u_{|P|}$ and $\forall i, j$ $P_i = P_j \implies u_i \sim_a u_j$.

201 210 realizes AA in the abelian sens.

Abelian equivalence and patterns

Definition

Two words u and v are **abelian equivalent**, denoted by $u \sim_a v$, if v is a permutation of u.

aaabb \sim_a ababa, cabac \sim_a abcac.

Definition

A word $w \in \Sigma^*$ realizes in the abelian sense the pattern $P \in \Delta^*$ if there are $u_1, \ldots, u_{|P|} \in \Sigma^+$ such that $w = u_1 \ldots u_{|P|}$ and $\forall i, j$ $P_i = P_j \implies u_i \sim_a u_j$.

201 210 realizes AA in the abelian sens.

002201201200 realizes ABCBCA in the abelian sense:

$$\overbrace{0}^{A} \overbrace{02}^{B} \overbrace{201}^{C} \overbrace{20}^{B} \overbrace{120}^{C} \overbrace{0}^{A}$$

Avoiding Aⁿ

h

Question (Erdős 1957 & 1961)

Is there an infinite word over 4 letters avoiding AA in the abelian sense?

Theorem (Keränen, 1992)

The fixed points of the following 85-uniform morphism avoid AA:

- a
 ightarrow a b cacdeb cdcadedb da b a cab a db a b c b db c b a c b c d caeb a b da b a cadeb c d caedb c b a c b c d caedeb d c d a db d c b caeb c d caedb c b a c b c d caedeb d c b caeb c d caedb c d caedb

- $d \,
 ightarrow \, dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd$

Avoiding Aⁿ

h

Question (Erdős 1957 & 1961)

Is there an infinite word over 4 letters avoiding AA in the abelian sense?

Theorem (Keränen, 1992)

The fixed points of the following 85-uniform morphism avoid AA:

- a
 ightarrow a b cacdeb cdcadedb da b a cab a db a b c b db c b a c b c d caeb a b da b a cadeb c d caedb c b a c b c d caedeb d c d a db d c b caeb c d caedb c b a c b c d caedeb d c b caeb c d caedb c d caedb
- b
 ightarrow ~b cdb dade dadb adac ab eb db eb ac b ed cae de b de dadb de b eab eb db ade dadb dae de b de dadb dade adab a cade db da

 - $d \,
 ightarrow \, dab db c b a b c b d c b c a c dadb dad c a dab a c a b a db a b c b d b a d a c dadb d c b a b c b d b c b a b c b d b c b a c b a b d c b a b c b d b c b a c b a b d c b a b c b a c b a b c b a$

Theorem (Dekking, 1979)

The fixed points of f avoid AAA and the fixed point of h avoids AAAA:

$$f: \left\{ \begin{array}{ll} a & \mapsto aabc \\ b & \mapsto bbc \\ c & \mapsto acc \end{array} \right. h: \left\{ \begin{array}{ll} a & \mapsto abb \\ b & \mapsto aaab \end{array} \right.$$

Р		AAA	AA
Smallest $ \Sigma $ such that P is avoidable over Σ	2	3	4

Р		AAA	AA
Smallest $ \Sigma $ such that P is avoidable over Σ	2	3	4

Can we deduce other avoidability results from that?

Р		AAA	AA
Smallest $ \Sigma $ such that P is avoidable over Σ	2	3	4

Can we deduce other avoidability results from that?

Lemma

Any realization w of ABAB is also a realization of AA.

Proof.

$$w=a_1b_1a_2b_2$$
 and $a_1\sim_a a_2$, $b_1\sim_a b_2$

- $\implies a_1b_1 \sim_a a_2b_2$. *w* is a realization of AA.
- \implies ABAB is avoidable over 4 letters.

Starting the classification of binary patterns

Theorem (Divisibility)

Let P and O be two patterns, if

- O does not avoid P in the abelian sense,
- P is abelian-avoidable over k letters

then O is abelian-avoidable over k letters.

Starting the classification of binary patterns

Theorem (Divisibility)

Let P and O be two patterns, if

- O does not avoid P in the abelian sense,
- P is abelian-avoidable over k letters

then O is abelian-avoidable over k letters.

Theorem

Binary patterns other than A, AB and ABA are avoidable over 4 letters.

Starting the classification of binary patterns

Theorem (Divisibility)

Let P and O be two patterns, if

- O does not avoid P in the abelian sense,
- P is abelian-avoidable over k letters

then O is abelian-avoidable over k letters.

Theorem

Binary patterns other than A, AB and ABA are avoidable over 4 letters.

AA is avoidable over 4 letters and the binary patterns avoiding AA are:

Theorem (2-avoidability (J. Currie, T. Visentin, 2007))

Binary patterns of length greater than 118 are abelian-avoidable over the binary alphabet.

Theorem (2-avoidability (J. Currie, T. Visentin, 2007))

Binary patterns of length greater than 118 are abelian-avoidable over the binary alphabet.

Theorem (3-avoidability (R.))

Binary patterns of length at least 9 are abelian-avoidable over 3 letters.

Theorem (2-avoidability (J. Currie, T. Visentin, 2007))

Binary patterns of length greater than 118 are abelian-avoidable over the binary alphabet.

Theorem (3-avoidability (R.))

Binary patterns of length at least 9 are abelian-avoidable over 3 letters.

Theorem (2-avoidability (R.))

Binary patterns of length greater than 14 are abelian-avoidable over the binary alphabet.

For any convenient morphism h and any pattern P one can decide if the fixed points of h avoid P.

(A generalization of the algorithm from Currie and Rampersad for the patterns of the form AAA...).

For any convenient morphism h and any pattern P one can decide if the fixed points of h avoid P.

(A generalization of the algorithm from Currie and Rampersad for the patterns of the form AAA...).

AABBAB is avoided by any fixed point of $a \mapsto aabaac, b \mapsto cbbbab, c \mapsto cbccac.$

For any convenient morphism h and any pattern P one can decide if the fixed points of h avoid P.

(A generalization of the algorithm from Currie and Rampersad for the patterns of the form AAA...).

AABBAB is avoided by any fixed point of $a \mapsto aabaac, b \mapsto cbbbab, c \mapsto cbccac.$

 \implies AABBAB, ABAABB and AAA are avoidable over the ternary alphabet.

 \implies If a pattern contains AABBAB or ABAABB or AAA it is abelian-avoidable over the ternary alphabet.

The search

Any binary pattern avoiding AABBAB, ABAABB and AAA belongs, up to symmetry, to: {A, AA, AB, AAB, ABAA, AABAB, AABAB, ABBAA, AABAAB, AABAAB, AABAAB, AABAAB, AABAABA, AABAABA, AABAABA, AABAABA, AABAABA, AABAABA, AABAABAA, AABAABAA, AABAABAA, AABAABAABA, AABAABAABA,

Any other binary pattern is abelian-avoidable over 3 letters.

Over the binary alphabet

morphisms	avoided patterns
	AABBBAAAB, ABAAABBBA, AAABABABBB, AAABABBBBB,AAABABBBAB,
	AABBBABAAB,AABBBABABA, ABAABABBBA,ABAABBBAAA, ABABAABBBA,
$a \mapsto aabaa$	ABBBABAAAB, AABAABBBAB,AABBBAABAB, AABBBAABAAB, AAABABBAAAB,
$b \mapsto bbabb$	AABBBABBBAA, ABABABBBABA, ABABBABBABA, AAABAAAB
	AAABAABAABAB,AAABABAAABAB, AABAAABABAAB, AAABAAAB
	AAABAABABAAB, AAABABAABAAB, ABBABAAABAAB, ABABBBABB
	ABAABBBAAB, AAABBABABB, AAABBABBAB, AABAABBABB,
$a \mapsto aaaab$	AABABABBBA, AABABBABBA, AABABBBAAB, AABABBBABA,
$b \mapsto abbab$	AABBAABBBA, AABBABABBA, AABBABBAAB, AABBABBABA,
	AABBBAABBA, ABAABBABBA, AABBABABBBA, AABABBBABB
	AAAA, AAABAABBB, AAABBBABB, AABBABBBA, AABBBABBA,
$a \mapsto abb$	AAABBAAABB,AABABAAABB, ABBBAABBBA, AAABAABBAB, AAABAABAABBA
$b \mapsto aaab$	AAABBAABAAB, AABAABAABBA, AABAABBAAAB, AABABABAAAB,
	AAABBAAABAB, AABAAABABAB, AABAAABBAAB, AAABAABAAABA
$a \mapsto aaab$	AAABABBBAA, AAABBAABBB, AAABBABBAA, ABABAAABBB,
$b \mapsto bbba$	ABABBBAABBA, AABABBAAABA, AABBABAAABA,
$a \mapsto abaa$	AABBABBABBA, AABABBABBBA, AABBBABBABA, ABABBABBABBA,
$b \mapsto babb$	ABABBABBABA, ABABBBABABABA, ABBABABBABBA,
$a \mapsto aaaba$	ABAABBBAAA,
$b \mapsto babbb$	AABABBBAAA,
$a \mapsto aababbaaaba$	AABAAABAAABAA, ABBBABBBABBBA,
$b \mapsto babbbaababb$	AAABAAABAAABAAAA,

Over the binary alphabet

morphisms	avoided patterns
	AABBBAAAB, ABAAABBBA, AAABABABBB, AAABABBBBB,AAABABBBAB,
	AABBBABAAB,AABBBABABA, ABAABABBBA,ABAABBBAAA, ABABAABBBA,
$a \mapsto aabaa$	ABBBABAAAB, AABAABBBAB,AABBBAABAB, AABBBAABAAB, AAABABBAAAB,
$b \mapsto bbabb$	AABBBABBBAA, ABABABBBABA, ABABBABBABA, AAABAAAB
	AAABAABAABAB,AAABABAAABAB, AABAAABABAAB, AAABAAAB
	AAABAABABAAB, AAABABAABAAB, ABBABAAABAAB, ABABBBABB
	ABAABBBAAB, AAABBABABB, AAABBABBAB, AABAABBABB,
$a \mapsto aaaab$	AABABABBBA, AABABBABBA, AABABBBAAB, AABABBBABA,
$b \mapsto abbab$	AABBAABBBA, AABBABABBA, AABBABBAAB, AABBABBABA,
	AABBBAABBA, ABAABBABBA, AABBABABBBA, AABABBBABB
	AAAA, AAABAABBB, AAABBBABB, AABBABBBA, AABBBABBA,
$a \mapsto abb$	AAABBAAABB,AABABAAABB, ABBBAABBBA, AAABAABBAB, AAABAABAABBA,
$b \mapsto aaab$	AAABBAABAAB, AABAABAABBA, AABAABBAAAB, AABABABAAAB,
	AAABBAAABAB, AABAAABABAB, AABAAABBAAB, AAABAABAABAAABA
$a \mapsto aaab$	AAABABBBAA, AAABBAABBB, AAABBABBAA, ABABAAABBB,
$b \mapsto bbba$	ABABBBAABBA, AABABBAAABA, AABBABAAABA,
$a \mapsto abaa$	AABBABBABBA, AABABBABBBA, AABBBABBABA, ABABBABBABBA,
$b \mapsto babb$	ABABBABBBABA, ABABBBABABBA, ABBABABBABBA,
$a \mapsto aaaba$	ABAABBBAAA,
$b \mapsto babbb$	AABABBBAAA,
$a \mapsto aababbaaaba$	AABAAABAAABAA, ABBBABBBABBBA,
$b \mapsto babbbaababb$	AAABAAABAAABAAAA,

Lemma

Any binary pattern of length at least 15 contains a pattern from this list.

Over the binary alphabet

morphisms	avoided patterns
	AABBBAAAB, ABAAABBBA, AAABABABBB, AAABABBBBB,AAABABBBAB,
	AABBBABAAB,AABBBABABA, ABAABABBBA,ABAABBBAAA, ABABAABBBA,
$a \mapsto aabaa$	ABBBABAAAB, AABAABBBAB,AABBBAABAB, AABBBAABAAB, AAABABBAAAB,
$b \mapsto bbabb$	AABBBABBBAA, ABABABBBABA, ABABBABBABA, AAABAAAB
	AAABAABAABAB,AAABABAAABAB, AABAAABABAAB, AAABAAAB
	AAABAABABAAB, AAABABAABAAB, ABBABAAABAAB, ABABBBABB
	ABAABBBAAB, AAABBABABB, AAABBABBAB, AABAABBABB,
$a \mapsto aaaab$	AABABABBBA, AABABBABBA, AABABBBAAB, AABABBBABA,
$b \mapsto abbab$	AABBAABBBA, AABBABABBA, AABBABBAAB, AABBABBABA,
	AABBBAABBA, ABAABBABBA, AABBABABBBA, AABABBBABB
	AAAA, AAABAABBB, AAABBBABB, AABBABBBA, AABBBABBA,
$a \mapsto abb$	AAABBAAABB,AABABAAABB, ABBBAABBBA, AAABAABBAB, AAABAABAABBAB,
$b \mapsto aaab$	AAABBAABAAB, AABAABAABBA, AABAABBAAAB, AABABABAAAB,
	AAABBAAABAB, AABAAABABAB, AABAAABBAAB, AAABAABAABAAABA
$a \mapsto aaab$	AAABABBBAA, AAABBAABBB, AAABBABBAA, ABABAAABBB,
$b \mapsto bbba$	ABABBBAABBA, AABABBAAABA, AABBABAAABA,
$a \mapsto abaa$	AABBABBABBA, AABABBABBBA, AABBBABBABA, ABABBABBABBA,
$b \mapsto babb$	ABABBABBBABA, ABABBBABABBA, ABBABABBABBA,
$a \mapsto aaaba$	ABAABBBAAA,
$b \mapsto babbb$	AABABBBAAA,
$a \mapsto aababbaaaba$	AABAAABAAABAA, ABBBABBBABBBA,
$b \mapsto babbbaababb$	AAABAAABAAABAAAA,

Lemma

Any binary pattern of length at least 15 contains a pattern from this list.

 \implies Any binary pattern of length at least 15 is abelian-avoidable over the binary alphabet.

- Can we improve the result with H-DOLs?
- How to find good morphisms?
- How to show "efficiently" that a pattern is not abelian-avoidable?

- Can we improve the result with H-DOLs?
- · How to find good morphisms?
- How to show "efficiently" that a pattern is not abelian-avoidable?
- What if we replace \sim_a by another relation?

- Can we improve the result with H-DOLs?
- · How to find good morphisms?
- How to show "efficiently" that a pattern is not abelian-avoidable?
- What if we replace \sim_a by another relation?

Thanks!