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WHY THIS TALK?

v

| started working with Eric Duch&ne more than 10 years ago!

v

| recently gave a course at CIRM

» A video is available http://library.cirm-math.fr/
> A chapter is on its way. ..

v

Nice applications of combinatorics on words

» young researchers attending this workshop
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CRASH COURSE ON SUBTRACTION GAMES

Wythoff's game or, the Queen W goes to (0,0)
> two players playing alternatively;
» the player unable to move loses the game (Normal play);
> two piles of token;

» Nim rule : remove a positive number of token from one pile Z
Moves = {(¢,0), (0,7) | ¢ > 1}.

» Wythoff's rule: remove simultaneously the same number of
token from both piles

Moves = {(i,0), (0,4), (i,7) | i > 1}.
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Winning and losing positions:

STATUS  (NEXT MOVE) OR  (PREVIOUS PLAYER)

A position is P, if all its options are N
A position is NV, if there exists an option in P.

If the game-graph is acyclic
> vertices = positions
» edges = available options,

every position is either A/, or P.




REMARK (GRAPH-THEORETIC NOTION)

> The set of P-positions is the kernel of the game-graph:

» stable set: k /— k’;
» absorbing set: { — k;
» always exists for acyclic graphs.

> The game-graph grows exponentially.

A winning strategy is a map from N to P assigning
to every winning position in N an available option in P.



P-positions and N -positions for Wythoff's game.
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P-positions and N -positions for Wythoff's game.
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P-positions and N -positions for Wythoff's game.



DEFINITION
Let S € N. MeX (minimum excluded value) of S = min N'\ S.

Let G be a combinatorial game and z be a position.
The Grundy function is given by

G(z) = MeX(G(Opt(z))).

MeX{0,1,3,5} =2, MeX{2,3,6} =0, MeX{ = 0.

CHARACTERIZATION OF THE -POSITIONS
Let = be a position. We have G(z) = 0 iff z is in P.

NIM ON ONE PILE

G(p) = p where p is the number of token left.



THEOREM (SPRAGUE—GRUNDY)

Let G; be combinatorial games with G; as Grundy function,
1 =1,...,n. Then the disjunctive sum of games Gi + - -- + G,
has Grundy function

g(.’L‘l, e 7wn) = gl(wl) ®©---D gn(wn)
where @ is the Nim-sum.

Nim on n piles is the sum of n games of Nim on one pile.

APPLICATION
Let’s play on four boards simultaneously:
» G; Nim G1(2,5) =7
> Gy Wythoff G2(3,4) =2
» Gs Nim on three piles G3(8,7,6) =9
» Gy Wythoff G4(3,9) = 12
Should you start? Just compute whether 7®2@& 9@ 12 is 0 or not?



General questions

» Characterize the set of P-positions?
» Is it computationally hard to determine these positions?
» Compute a winning strategy.
Thanks to Sprague—Grundy theorem, we have an extra motivation:

» Compute the Grundy function of all positions.



For the game of Nim, first few values of (z,y) — Gn(z,y) =By

919 8 11 10 13 12 15 14 1 O
8§18 9 10 11 12 13 14 15 0 1
TI7T6 5 4 3 2 1 0 15 14
6/6 7 4 5 2 3 0 1 14 15
5/5 4 7 6 1 0 3 2 13 12
414 5 6 v 0 1 2 3 12 13
313 2 1 0 7 6 5 4 11 10
2123 0 1 6 7 4 5 10 11
14710 3 2 5 4 7 6 9 8
ojo 1.2 3 4 5 6 7 8 9

01 2 3 4 5 6 7 8 9

~~ Exercises 21 and 22 in Section 16.6, p.451, Allouche-Shallit’03.



REGULAR SEQUENCES

What can be said about the structure of this table?

» Let us start with multidimensional k-automatic sequences;

> then move to k-regular sequences.



0. Salon, Suites automatiques a multi-indices, Séminaire de théorie des
nombres, Bordeaux, 1986-1987, exposé 4.



Tracking the past

x(12’ 10)

repy(12) = 1100,

repy(10) = 1010

o>



Tracking the past

x(12’ 10)

repy(12) = 1100,

repy(10) = 1010

o>



Tracking the past

z(6,5) — z(12,10)

repy(6) = 110, repy(5) = 101

DA



Tracking the past

z(3,2) — z(6,5) — z(12,10)

repy(3) = 11,

1, repy(2) =10

DA



Tracking the past

z(1,1) = 2(3,2) = 2(6,5) — 2(12,10) 1repy(3) =1, repy(2)=1



Definition of the k-kernel in a multidimensional setting

DEFINITION

Consider a bi-dimensional sequence x = (z(m, 1)) m,n>0-
It is a set of bi-dimensional subsequences:

Kery(x) = {(z(k'm + r,k'n + 8))mnz0 | i > 0,0 < 7,5 < k'}.

This corresponds to selecting the suffixes
(0 Pry oy, 07 95, -+ 51)

where rep(7) = 15 - - 11 and rep;(s) = sq- - - s1.
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Some of these subsequences (0, 1)

,
35l I E B B B EBE
|
,
A

DA



Some of these subsequences (1,1)

DA



Some of these subsequences (00, 00)

40> «Fr « >

«E=

DA



Some of these subsequences (01, 00)

40> «Fr « >

«E=

DA



Some of these subsequences (10, 00)

40> «Fr « >

«E=

DA



~> We can define multidimensional k-regular sequences.
The Z-module generated by Kery(x) is finitely generated.

PROPOSITION (EXERCISE)

For the game of Nim, (Gn(m, n))m n>0 is 2-regular.

Proof. We have

Gn(2m,2n) = 2m @ 2n =2Gn(m,n)
gn(2m+1,2n) = (2m+1) @ 2n =2Gn(m,n)+1
Gn(2m,2n+1) = 2m @ (2n + 1) =2Gy(m,n)+1

Gv@2m+1,2n+1)= (2m+1)@®2n+1) =2Gy(m,n)

thus the 2-kernel is generated by (Gn(m, n))m n>0 and the
constant sequence (1). O



Is that clear for any element of the 2-kernel?
Can (Gn(8m +5,8n + 2))m n>0 be expressed as a Z-linear
combination of these two sequences?

G (8m +5,8n + 2)

Gy (2(4m +2) +1,2(4n + 1))
2GN(4m +2,4n + 1) + 1
20N (2(2m +1),2.2n +1) + 1
2[2682m+1,2n)+1]+1
4Gn(2m +1,2n) +3

412Gy (m,n) +1] +3
8Gn(m,n) +17.



Meaning of these relations within the table:

9 8 11 10 13 12 15 14 1 O
8 9 10 11 12 13 14 15 0 1
76 5 4 3 2 1 0|15 14
6 74 5 2 3 0 1|14 15
54 7 6 1 0 3 2|13 12
45 6 7 0 1 2 3|12 13
321 0|7 65 4 11 10
230 11]6 74 5 10 11
10(3/2 5 4 7 6 9 8
012 3 4 5 6 7 8 9
First few values of Gy (m,n).
2Gy(m,n)+1| 2Gy(m,n)
Gn(m,n) = 2Gy(m,n) | 2Gn(m,n)+1




For the game of Wythoff, first few values of (z,y) — Gw(z,y)
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For Wythoff's game, not so many results are known

» U. Blass, A.S. Fraenkel, The Sprague-Grundy function for Wythoff's
game. Theoret. Comput. Sci. 75 (1990), no. 3, 311-333.

> Y. Jiao, On the Sprague-Grundy values of the F-Wythoff game.
Electron. J. Combin. 20 (2013).

> A. Gu, Sprague-Grundy values of the R-Wythoff game. Electron. J.
Combin. 22 (2015).
» M. Weinstein, Invariance of the Sprague-Grundy function for
variants of Wythoff's game. Integers 16 (2016).
It's challenging, we quote the Siegel's book:

“No general formula is known for computing arbitrary G-values of
WYTHOFF. In general, they appear chaotic, though they exhibit a
striking fractal-like pattern ... Despite this apparent chaos, the
G-values nonetheless have a high degree of geometric regularity.”



Gw(m,n), m,n <100

PROPOSITION (ALLOUCHE—SHALLIT)

The projection on a finite alphabet of a k-regular sequence is a
k-automatic sequence.



SHAPE-SYMMETRIC MORPHISMS

Question: What can be said about the (morphic) structure of the

P-positions of Wythoff's W game?

000O0O0OO0OT1O0O0OO0OO
0000O0OO0OO0OTO0ODO0OO0O@
000O0O0OO0OO0OGO0OO0OTO0OF@ 0
0 0001O0O0O0O0O0O
000O0O0O0OO0OTO0OO0OT 01
000100O0O0O0OO0O
000O0O0OO0OO0OT1QO0TO0OO
0000O0O1O0O0O0O0O
01.000O0O0O0O0OO0OO
0010O0O0OO0O0O0OO0OO
10000O0O0O0O0OO0OO

>0 =

(Pig)ij




Let's try something...
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Let d > 2
A d-dimensional picture over A is a map
z:[0,81 —1] x -+ x[0,84 —1] = A

(81,...,8q) is the shape of z; if s; < 0o, for all 4, z is bounded.
The set of bounded pictures over A is denoted by 5,(A).

If for some i € [1,d], [z]z = |ylz = (s1,.- ., 8i—1, Sit1,-- -, 84),
then we define the concatenation of x and y in the direction i to
be the d-dimensional picture z ®" y of shape

(817 sy Si—1, |x|z + |y|i75i+17 .. .,Sd).



AN EXAMPLE

_aband lalalb
gc_cd y_bcd

of shape respectively |z| = (2,2) and |y| = (2, 3).

Since |z]5 = |yl5 = 2, we get

alblalalbd
cld|b

1‘®2y:

However z ®! y is not defined because 2 = \xh % |yh = 3.



REMARK

A map v: A — B4(A) cannot necessarily be extended to a
morphism v: B4(A) — Ba(A4).

% (o)lz =(d)z =1, [y(a)lz =N (b)z =2
ol Yol =)k =2 (g =hb)=1
alald
z = Z , (@) =|b]d




b|d
Y oa— ol br—>, cn—>, d»—>.

a|d
d
T = Z ak v(z) = d|b
a | a C
but 72(z) is not well-defined:

a|a a|a
() -

b|d b|d
alal [ala




What do we need for () to be defined?

——

-

~+ the images of any two symbols on a row (resp. column) have
the same number of rows (resp. columns).



IN A FORMAL WAY (%)

Let v: A — By(A) be a map and = be a bounded d-dimensional
picture such that

Vie{l,...,d},Vk < |z|;,Va,b € Alph(z; ) : [v(a)l: = |v(b)l;-

Alph(z); ;) is the set of letters occurring in the section j; ;..

Then the image of = by +y is the d-dimensional picture defined as

y(z) = ®(1]§n1<|x\1 ( .. (®g§n4<|x\d7(x(n1’ e nd))) .. ) .



DEFINITION

If for all @ € A and all n > 1, v"(a) is well-defined from v"~1(a),
then ~ is said to be a d-dimensional morphism. We can define
accordingly a prolongable morphism.

DEFINITION

Let v: B4(A) — B4(A) be a d-dimensional morphism having the
d-dimensional infinite word x as a fixed point.

This word is shape-symmetric with respect to « if, for all
permutations v of [1, d]], we have, for all ny,...,ng >0,

Iv(x(n1, ..., na))| = (s1,---,84)

I
Y= (mu)s - s Pu(@))] = (Suys - -+ 5 Su(a))-



Reconsider our map ¢y (one can indeed prove that it is a
d-dimensional morphism having a shape-symmetric fixed point).

hlidl|c|h|d
1] i lml|k|i|lm

cl|d P
a br—>cde»—>Zszb
a alb|i cldl|e|h|d
albli|li|lm

sizes: 1, 2,3, 5
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Initial blocks of some 3-dimensional shape-symmetric picture
Maes' thesis p. 107.

o «F = = z ©ace



THEOREM (MAES 1999)

» Determining whether or not a map p: Bi(A) = Bi(A) is a
d-dimensional morphism is a decidable problem.

> If u is prolongable on a letter a, then it is decidable whether
or not the fixed point (@) is shape-symmetric.

THEOREM (DUCHENE, FRAENKEL, NOWAKOWSKI, R.)

The image by pw of the fixed point %, (a) gives exactly the
P-positions of Wythoff's game.



SKETCH OF THE PROOF OF MAES’S RESULTS

Cobham, Dumont—Thomas, Maes, Shallit, ...

Morphism <+ Automata ‘

Links with non-standard numeration systems: J. Shallit (1988),
J.-P. Allouche, E. Cateland, et al. (1997), J.-P. Allouche,
K. Scheicher, R. Tichy (2000), Marsault-Sakarovitch, M. R., ...



GENERAL THEOREM “MORPHIC = AUTOMATIC”

Let A be an ordered alphabet. Let w € AN be an infinite word,
fixed point f“(a) of a morphism f: A* — A*.
» associate with f a DFA M over the alphabet
{0,...,max|f(b)| — 1};
» A is the set of states;
» the initial state is a, all states are final;
» if f(b)=co--- cm, then bi> ¢, j < m;
> consider the language L accepted by M except words starting
with 0;
» genealogically order L: L = {wy < wy < wp < --- }.
The nth symbol of w, n >0, is

)



Examples (first, in 1D):

» Take your favorite k-uniform morphism, the associated regular
language is {e} U{1,...,k —1}{0,... . k —1}*

a +— abc
f b — cbc
c +— bca

» Take the Fibonacci morphism a + ab, b — a, the associated
regular language is {¢} U 1{0,01}*



We can do the same in a multidimensional setting.

» There are d > 2 associated regular languages (details missing,
idea on the next slide).

Assume that the images of letters have shape (s1, s2), s; < 2.
Associate with ¢ an automaton with input alphabet:

o) 6)- ) )

e -pr. GI0. B o [

we have transitions like




Associated languages — example of product of substitutions

a +— abc
f:{b»—>cbc g:{()»—>81

c — beca

(a,0) D DD ) @O TG0 [ 0]

(5,0) 1 Eiég Ezg 228 (5,1) = [0 [ (5,0 [ (&,0)]
(c,0) 1 Ez(l)g 228 EZ(I); (6,1) - [(5,0) [ (©.0) [ (a,0]]

{e} U{1,2}{0,1,2}* and {} U 1{0,01}*



The growth is derived from these languages



The growth is derived from these languages



The growth is derived from these languages







Can this map be extended to a morphism?

b|d
Y oa— ol br—>, c»—>, dr—>.

(¥)

(6): (o)




Recall the condition (*):

Vie{l,...,d},Vk < |z|;,Va, b € Alph(z; 1) : [v(a)li = [v(b)l;-

(o) (50)- () ()
() ()
(")

The image by ~ of all these ele-
ments should have the same number
of columns.




Recall the condition (*):

Vie{l,...,d},Vk < |z|;,Va, b € Alph(z; 1) : [v(a)li = [v(b)l;-

000 001 010 011 100
100/ \100/° \100)° \100)> \100) > "
w
0lwl=3100

The image by ~ of all these elements should have the same
number of rows.






v

Take the projections of the DFA A
We get 2 NFAs: N7 and N>

The set of initial states is made of those reached by 0*

v

v

v

Determinize (Rabin—Scott's subset construction): D; and Dy
Q={q,...,qr} is a state of D reached when reading w,
IFF, in V3, there is a path from I; to g; with label w, Vj,

IFF, in A, Vj, there is a path from the initial state to ¢; with a

label of the form
0---0w
Zj ’

v(q1),-..,7(g-) must have the same number of columns



v

Take the projections of the DFA A
We get 2 NFAs: N7 and N>

The set of initial states is made of those reached by 0*

v

v

v

Determinize (Rabin—Scott's subset construction): D; and Dy
Q={q,...,qr} is a state of Dy reached when reading w,
IFF, in N3, there is a path from I; to g; with label w, Vj,

IFF, in A, Vj, there is a path from the initial state to ¢; with a

label of the form
2
0---0w)/ "’

v(q1),-..,7(g-) must have the same number of rows



Lat—

Dy
Dy

| state of Dy | [y(-)]2
€ {a,b,c} 2,2,1
1 | {a,d} 2,1
10 |{a,0,d) |2,2,1

-100 | {a, b, c,d} | 2,2,1,1



THEOREM (MAES 1999)

> If u is prolongable on a letter a, then it is decidable whether
or not the fixed point () is shape-symmetric.

IFF the associated languages are the same.



IS THERE SOME TIME LEFT?

THEOREM (DUCHENE, FRAENKEL, NOWAKOWSKI, R.)

The image by pw of the fixed point ¢4, (a) gives exactly the
P-positions of Wythoff's game.

We associate with ¢ an automaton with input alphabet

o) 6)- ) 0

o= GO0, (1 o [

we have transitions like




From morphism to automaton, we get




1) If all states are assumed to be final, this automaton accepts the

words
u
v

where |u| = |v| and u, v are both valid F-representation (possibly
padded with zeroes).

2) If we restrict to the “blue” part, this automaton accepts the

words

where wy - - - wp is a valid F-representation.

3) Now, if the set of final states is {a, €, g, 7, [}, we have the extra
condition that w; - - - wp ends with an even number of zeroes.

With Fraenkel's characterization of P-positions, this concludes the
proof. O



THEOREM (A. S. FRAENKEL, 1982)

(z,y), with z < y, is a P-position of Wythoff's game iff repp(z)
ends with an even number of zeroes and repy(y) = repp(z)0.
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