GAMES AND MULTIDIMENSIONAL SHAPE-SYMMETRIC MORPHISMS

Michel Rigo

http://www.discmath.ulg.ac.be/ http://orbi.ulg.ac.be/

Workshop on Words and Complexity Lyon, 19th February 2018

WHY THIS TALK?

- ▶ I started working with Eric Duchêne more than 10 years ago!
- ▶ I recently gave a course at CIRM
 - ► A video is available http://library.cirm-math.fr/
 - A chapter is on its way...
- Nice applications of combinatorics on words
- young researchers attending this workshop

- MR3621222 Reviewed Duchêne, Eric: Parreau, Aline; Rigo, Michel Deciding game invariance, Inform, and Comput. 253 (2017), part 1, 127-142. 91A46 (03B25 68Q45) Get it@ULiège Review PDF | Clipboard | Journal | Article
- MR3544849 Reviewed Cassaigne, Julien: Duchêne, Eric: Rigo, Michel Nonhomogeneous Beatty sequences leading to invariant games, SIAM I, Discrete Math. 30 (2016), no. 3, 1798-1829, 91A05 (11B83 11P81 68R15 91A46) Get it@ULiège Review PDF | Clipboard | Journal | Article | 1 Citation
- MR2676861 Reviewed Duchêne, Eric; Rigo, Michel Invariant games, Theoret, Comput. Sci. 411 (2010), no. 34-36, 3169-3180, (Reviewer: Paweł Prałat) 91A46 Get it@ULiège Review PDF | Clipboard | Journal | Article | 6 Citations
- MR2600974 Reviewed Duchêne, Eric; Fraenkel, Aviezri S.; Nowakowski, Richard I.; Rigo, Michel Extensions and restrictions of Wythoff's game preserving its & positions, I. Combin, Theory Ser. A 117 (2010), no. 5, 545-567. (Reviewer: Thane Farl Plambeck) 91A46 (91A43) Get it@ULiège Review PDF | Clipboard | Journal | Article | 22 Citations
- MR2461578 Reviewed Duchêne, Eric: Rigo, Michel Cubic Pisot unit combinatorial games, Monatsh, Math. 155 (2008), no. 3-4, 217–249. (Reviewer: Petr Ambrož) 68R15 (11A67 91A05 91A46) Get it@ULiège Review PDF | Clipboard | Journal | Article | 3 Citations
- MR2401268 Reviewed Duchêne, Eric; Rigo, Michel A morphic approach to combinatorial games: the Tribonacci case, Theor. Inform. Appl. 42 (2008), no. 2, 375–393, (Reviewer: Narad Rampersad) 91A46 (68045 68R15) Get it@ULiège

Review PDF | Clipboard | Journal | Article | 7 Citations

CRASH COURSE ON SUBTRACTION GAMES

Wythoff's game or, the Queen \P goes to (0,0)

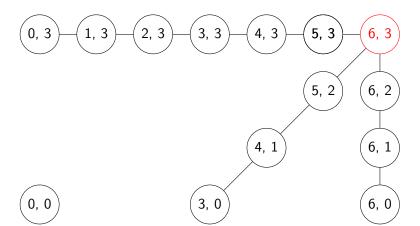
- two players playing alternatively;
- the player unable to move loses the game (Normal play);
- two piles of token;
- ▶ <u>Nim rule</u> : remove a positive number of token from one pile \(\big| \)

$$\mathsf{Moves} = \{(i,0), (0,i) \mid i \geq 1\}.$$

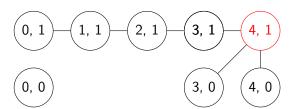
Wythoff's rule: remove simultaneously the same number of token from both piles

Moves =
$$\{(i,0), (0,i), (i,i) \mid i \geq 1\}.$$

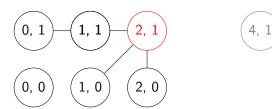
₩ (6,3)



$$\stackrel{\text{\tiny def}}{=} (6,3) \xrightarrow{A} (4,1)$$



$$\stackrel{\text{\tiny def}}{=} (6,3) \xrightarrow{A} (4,1) \xrightarrow{B} (2,1)$$



$$\stackrel{\text{\tiny W}}{=} (6,3) \xrightarrow{A} (4,1) \xrightarrow{B} (2,1) \xrightarrow{A} (1,0)$$

$$\overset{\text{\tiny def}}{=} (6,3) \xrightarrow{A} (4,1) \xrightarrow{B} (2,1) \xrightarrow{A} (1,0) \xrightarrow{B} (0,0)$$

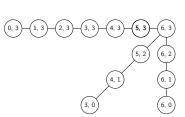
Winning and losing positions:

STATUS \mathcal{N} (NEXT MOVE) OR \mathcal{P} (PREVIOUS PLAYER)

A position is \mathcal{P} , if all its options are \mathcal{N} ; A position is \mathcal{N} , if there exists an option in \mathcal{P} .

If the game-graph is acyclic

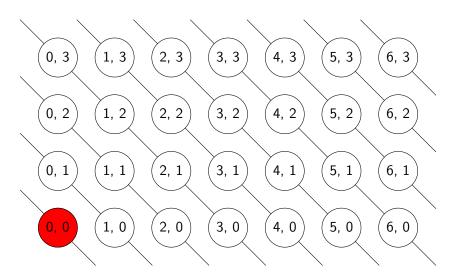
- vertices = positions
- edges = available options, every position is either \mathcal{N} , or \mathcal{P} .



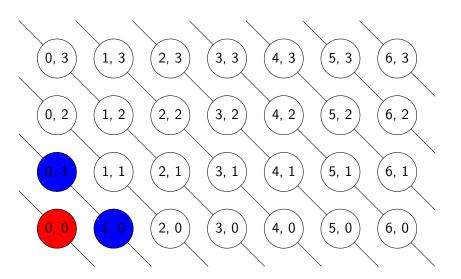
REMARK (GRAPH-THEORETIC NOTION)

- ▶ The set of \mathcal{P} -positions is the *kernel* of the game-graph:
 - stable set: $k \not\longrightarrow k'$;
 - absorbing set: $\ell \longrightarrow k$;
 - always exists for acyclic graphs.
- The game-graph grows exponentially.

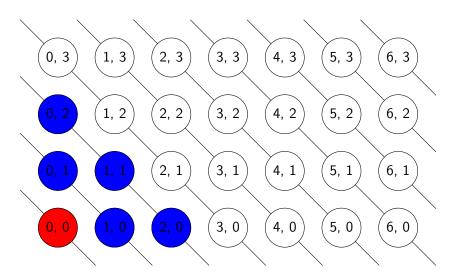
A winning strategy is a map from \mathcal{N} to \mathcal{P} assigning to every winning position in \mathcal{N} an available option in \mathcal{P} .



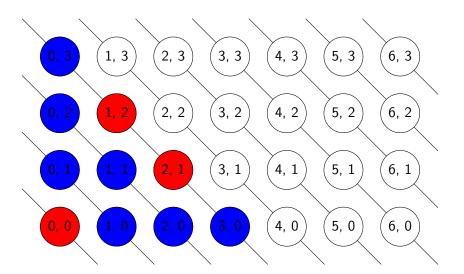
 \mathcal{P} -positions and \mathcal{N} -positions for Wythoff's game.



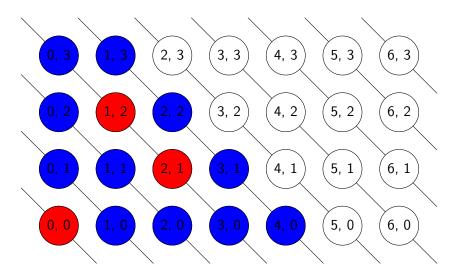
 \mathcal{P} -positions and \mathcal{N} -positions for Wythoff's game.



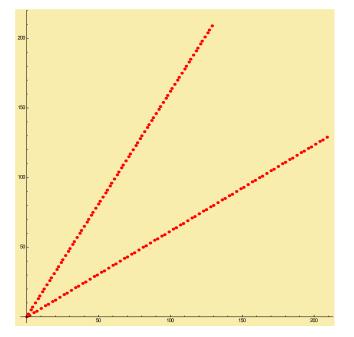
 \mathcal{P} -positions and \mathcal{N} -positions for Wythoff's game.



 \mathcal{P} -positions and \mathcal{N} -positions for Wythoff's game.



 \mathcal{P} -positions and \mathcal{N} -positions for Wythoff's game.



 \mathcal{P} -positions and \mathcal{N} -positions for Wythoff's game.

DEFINITION

Let $S \subset \mathbb{N}$. MeX (minimum excluded value) of $S = \min \mathbb{N} \setminus S$.

Let ${\it G}$ be a combinatorial game and ${\it x}$ be a position.

The Grundy function is given by

$$\mathcal{G}(x) = \mathsf{MeX}(\mathcal{G}(\mathsf{Opt}(x))).$$

$$MeX\{0,1,3,5\} = 2$$
, $MeX\{2,3,6\} = 0$, $MeX\emptyset = 0$.

CHARACTERIZATION OF THE *P*-POSITIONS

Let x be a position. We have $\mathcal{G}(x) = 0$ iff x is in \mathcal{P} .

NIM ON ONE PILE

 $\mathcal{G}(p) = p$ where p is the number of token left.

THEOREM (SPRAGUE-GRUNDY)

Let G_i be combinatorial games with G_i as Grundy function, $i=1,\ldots,n$. Then the disjunctive sum of games $G_1+\cdots+G_n$ has Grundy function

$$\mathcal{G}(x_1,\ldots,x_n)=\mathcal{G}_1(x_1)\oplus\cdots\oplus\mathcal{G}_n(x_n)$$

where \oplus is the Nim-sum.

Nim on n piles is the sum of n games of Nim on one pile.

APPLICATION

Let's play on four boards simultaneously:

- $G_1 \text{ Nim } \mathcal{G}_1(2,5) = 7$
- G_2 Wythoff $G_2(3,4)=2$
- G_3 Nim on three piles $G_3(8,7,6) = 9$
- G_4 Wythoff $G_4(3,9) = 12$

Should you start? Just compute whether $7 \oplus 2 \oplus 9 \oplus 12$ is 0 or not?

General questions

- ► Characterize the set of P-positions?
- ▶ Is it computationally hard to determine these positions?
- Compute a winning strategy.

Thanks to Sprague–Grundy theorem, we have an extra motivation:

Compute the Grundy function of all positions.

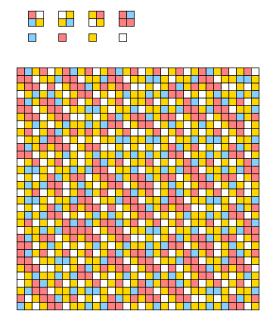
For the game of Nim, first few values of $(x,y)\mapsto \mathcal{G}_N(x,y)=x\oplus y$

→ Exercises 21 and 22 in Section 16.6, p.451, Allouche–Shallit'03.

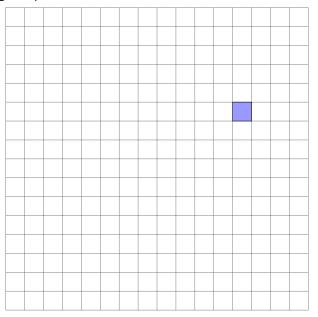
REGULAR SEQUENCES

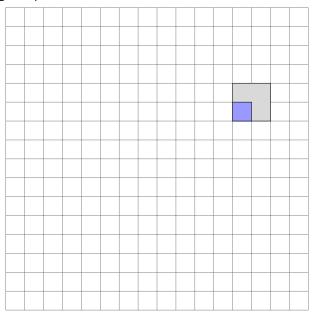
What can be said about the structure of this table?

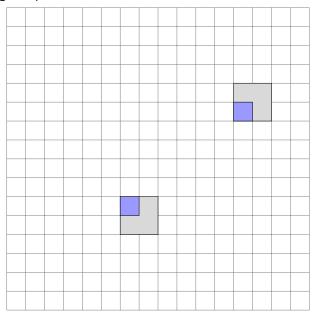
- ▶ Let us start with multidimensional *k*-automatic sequences;
- ▶ then move to *k*-regular sequences.



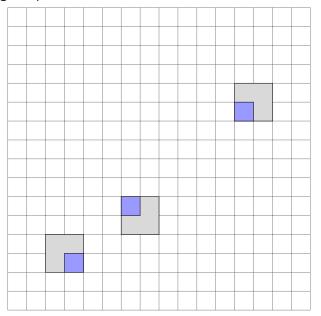
O. Salon, Suites automatiques à multi-indices, *Séminaire de théorie des nombres*, Bordeaux, 1986–1987, exposé 4.

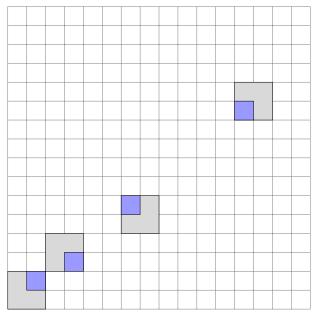






$$x(6,5) \to x(12,10) \quad \operatorname{rep}_2(6) = 110, \quad \operatorname{rep}_2(5) = 101 \quad \operatorname{rep}_2(5) = 1001 \quad \operatorname{rep}_2($$





$$x(1,1) \to x(3,2) \to x(6,5) \to x(12,10)$$
 rep₂(3) = 1, rep₂(2) = 1, rep₂(2)

Definition of the k-kernel in a multidimensional setting

DEFINITION

Consider a bi-dimensional sequence $\mathbf{x} = (x(m, n))_{m,n \ge 0}$. It is a set of bi-dimensional subsequences:

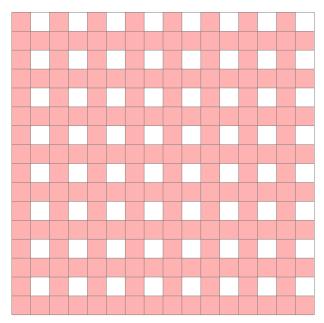
$$\operatorname{Ker}_{k}(\mathbf{x}) = \{(x(k^{i}m + r, k^{i}n + s))_{m,n \geq 0} \mid i \geq 0, 0 \leq r, s < k^{i}\}.$$

This corresponds to selecting the suffixes

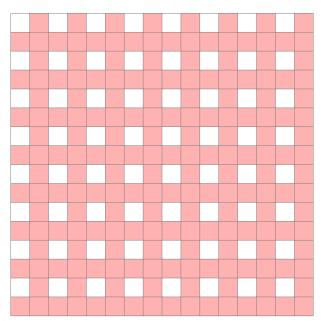
$$(0^{i-p}r_p\cdots r_1,0^{i-q}s_q\cdots s_1)$$

where $rep_k(r) = r_p \cdots r_1$ and $rep_k(s) = s_q \cdots s_1$.

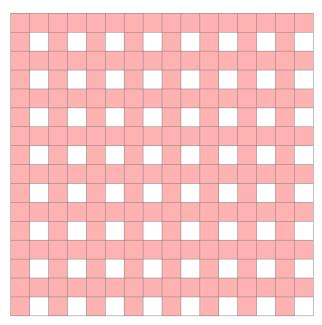
Some of these subsequences (0,0)



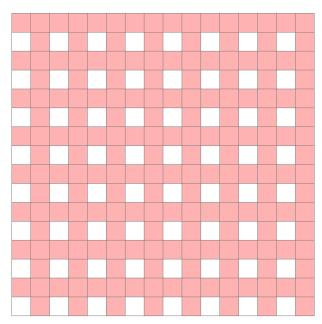
Some of these subsequences (1,0)



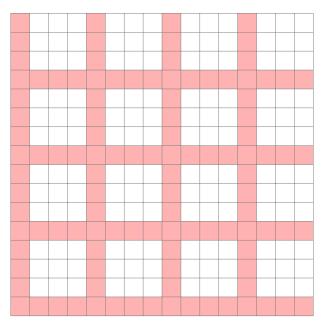
Some of these subsequences (0,1)



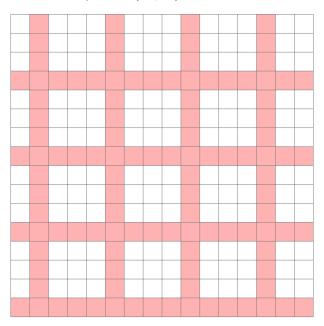
Some of these subsequences (1,1)



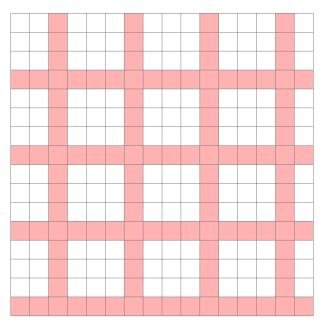
Some of these subsequences (00,00)



Some of these subsequences (01,00)



Some of these subsequences (10,00)



 \leadsto We can define multidimensional k-regular sequences. The \mathbb{Z} -module generated by $\mathrm{Ker}_k(\mathbf{x})$ is finitely generated.

Proposition (Exercise)

For the game of Nim, $(\mathcal{G}_N(m,n))_{m,n\geq 0}$ is 2-regular.

Proof. We have

$$\mathcal{G}_{N}(2m,2n) = 2m \oplus 2n = 2\mathcal{G}_{N}(m,n) \ \mathcal{G}_{N}(2m+1,2n) = (2m+1) \oplus 2n = 2\mathcal{G}_{N}(m,n) + 1 \ \mathcal{G}_{N}(2m,2n+1) = 2m \oplus (2n+1) = 2\mathcal{G}_{N}(m,n) + 1 \ \mathcal{G}_{N}(2m+1,2n+1) = (2m+1) \oplus (2n+1) = 2\mathcal{G}_{N}(m,n)$$

thus the 2-kernel is generated by $(\mathcal{G}_N(m,n))_{m,n\geq 0}$ and the constant sequence (1).

Is that clear for any element of the 2-kernel? Can $(\mathcal{G}_N(8m+5,8n+2))_{m,n\geq 0}$ be expressed as a \mathbb{Z} -linear combination of these two sequences?

$$\begin{split} \mathcal{G}_N(8m+5,8n+2) &= \mathcal{G}_N\left(2(4m+2)+1,2(4n+1)\right) \\ &= 2\mathcal{G}_N(4m+2,4n+1)+1 \\ &= 2\mathcal{G}_N(2(2m+1),2.2n+1)+1 \\ &= 2\left[2\mathcal{G}_N(2m+1,2n)+1\right]+1 \\ &= 4\mathcal{G}_N(2m+1,2n)+3 \\ &= 4\left[2\mathcal{G}_N(m,n)+1\right]+3 \\ &= 8\mathcal{G}_N(m,n)+7. \end{split}$$

Meaning of these relations within the table:

First few values of $\mathcal{G}_N(m,n)$.

For the game of Wythoff, first few values of $(x,y)\mapsto \mathcal{G}_W(x,y)$

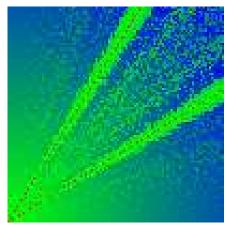
```
9
       10
                               13
            11
                 12
                                    14
                                         15
                                              16
        6
                 10
                                5
                                     3
                                              15
                                     5
             6
                  9
                      0
                          1
                                              14
6
   6
             8
                  1
                      9
                          10
                                3
                                     4
                                          5
                                              13
5
        3
                      6
                           8
                                     1
                  0
                               10
                     7
        5
             3
4
                           6
                                9
                                     0
                                               8
3
   3
             5
        4
                  6
                      2
                          0
                                     9
                                         10
                                              12
2
                  5
                      3
                                8
                                     6
                                          7
        0
                           4
                                              11
             0
                  4
                      5
                          3
                                7
                                     8
                                          6
                                              10
                  3
                      4
                           5
                                          8
                                               9
                                6
             2
                  3
                           5
                                6
                                          8
   0
                      4
                                               9
```

For Wythoff's game, not so many results are known

- ▶ U. Blass, A.S. Fraenkel, The Sprague-Grundy function for Wythoff's game. Theoret. Comput. Sci. 75 (1990), no. 3, 311–333.
- ▶ Y. Jiao, On the Sprague-Grundy values of the *F*-Wythoff game. Electron. J. Combin. 20 (2013).
- ▶ A. Gu, Sprague-Grundy values of the R-Wythoff game. Electron. J. Combin. 22 (2015).
- M. Weinstein, Invariance of the Sprague-Grundy function for variants of Wythoff's game. Integers 16 (2016).

It's challenging, we quote the Siegel's book:

"No general formula is known for computing arbitrary G-values of WYTHOFF. In general, they appear chaotic, though they exhibit a striking fractal-like pattern ... Despite this apparent chaos, the G-values nonetheless have a high degree of geometric regularity."



 $G_W(m, n), m, n \le 100$

Proposition (Allouche-Shallit)

The projection on a finite alphabet of a k-regular sequence is a k-automatic sequence.

SHAPE-SYMMETRIC MORPHISMS

Question: What can be said about the (morphic) structure of the \mathcal{P} -positions of Wythoff's $\@$ game?

Let's try something...

$$\varphi_{W}: a \mapsto \boxed{\begin{array}{c} c & d \\ a & b \end{array}} \quad b \mapsto \boxed{\begin{array}{c} e \\ i \end{array}} \quad c \mapsto \boxed{i \quad j} \quad d \mapsto \boxed{i} \quad e \mapsto \boxed{f \quad b}$$

$$f \mapsto \boxed{\begin{array}{c} h & d \\ g \quad b \end{array}} \quad g \mapsto \boxed{\begin{array}{c} h & d \\ f \quad b \end{array}} \quad h \mapsto \boxed{i \quad m} \quad i \mapsto \boxed{\begin{array}{c} h & d \\ i \quad m \end{array}}$$

$$j \mapsto \boxed{\begin{array}{c} c \\ k \end{array}} \quad k \mapsto \boxed{\begin{array}{c} c & d \\ l \quad m \end{array}} \quad l \mapsto \boxed{\begin{array}{c} c & d \\ k \quad m \end{array}} \quad m \mapsto \boxed{\begin{array}{c} h \\ i \end{array}}$$

and the coding

$$\mu_W: a, e, q, j, l \mapsto 1, \quad b, c, d, f, h, i, k, m \mapsto 0$$

Let $d \geq 2$

A d-dimensional picture over A is a map

$$x : [0, s_1 - 1] \times \cdots \times [0, s_d - 1] \to A$$

 (s_1, \ldots, s_d) is the shape of x; if $s_i < \infty$, for all i, x is bounded. The set of bounded pictures over A is denoted by $\mathcal{B}_d(A)$.

If for some $i \in [1, d]$, $|x|_{\widehat{i}} = |y|_{\widehat{i}} = (s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_d)$, then we define the concatenation of x and y in the direction i to be the d-dimensional picture $x \odot^i y$ of shape

$$(s_1,\ldots,s_{i-1},|x|_i+|y|_i,s_{i+1},\ldots,s_d).$$

AN EXAMPLE

$$x = \begin{array}{|c|c|c|c|} \hline a & b \\ \hline c & d \\ \hline \end{array} \quad \text{and} \quad y = \begin{array}{|c|c|c|} \hline a & a & b \\ \hline b & c & d \\ \hline \end{array}$$

of shape respectively |x| = (2,2) and |y| = (2,3).

Since $|x|_{\widehat{2}} = |y|_{\widehat{2}} = 2$, we get

However $x \odot^1 y$ is not defined because $2 = |x|_{\widehat{1}} \neq |y|_{\widehat{1}} = 3$.

Remark

A map $\gamma\colon A\to\mathcal{B}_d(A)$ cannot necessarily be extended to a morphism $\gamma\colon \mathcal{B}_d(A)\to\mathcal{B}_d(A)$.

$$\odot^2 : \ |\gamma(c)|_{\widehat{2}} = |\gamma(d)|_{\widehat{2}} = 1, \quad |\gamma(a)|_{\widehat{2}} = |\gamma(b)|_{\widehat{2}} = 2,$$

$$\bigcirc^1$$
: $|\gamma(a)|_{\hat{1}}^2 = |\gamma(c)|_{\hat{1}}^2 = 2$, $|\gamma(d)|_{\hat{1}}^2 = |\gamma(b)|_{\hat{1}}^2 = 1$.

$$x = \begin{bmatrix} c & d \\ a & b \end{bmatrix}, \quad \gamma(x) = \begin{bmatrix} a & a & d \\ b & d & b \\ a & a & c \end{bmatrix}$$

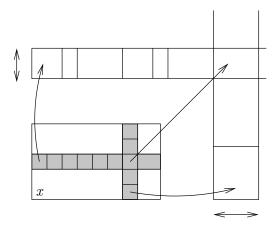
$$x = \begin{bmatrix} c & d \\ a & b \end{bmatrix}, \quad \gamma(x) = \begin{bmatrix} a & a & d \\ b & d & b \\ a & a & c \end{bmatrix}$$

but $\gamma^2(x)$ is not well-defined:

$$\begin{array}{c|ccccc}
 & b & d & b & d \\
\hline
a & a & a & a
\end{array}$$

$$\begin{array}{c|cccccc}
 & b & d & b & d \\
\hline
c & & & & & \\
\hline
b & d & & & & \\
\hline
a & a & & & & \\
\hline
a & a & & & & \\
\end{array}$$

What do we need for $\gamma(x)$ to be defined?



→ the images of any two symbols on a row (resp. column) have the same number of rows (resp. columns).

In a formal way (\star)

Let $\gamma \colon A \to \mathcal{B}_d(A)$ be a map and x be a bounded d-dimensional picture such that

$$\forall i \in \{1,\ldots,d\}, \forall k < |x|_i, \forall a,b \in \mathsf{Alph}(x_{|i,k}): |\gamma(a)|_i = |\gamma(b)|_i.$$

 $\mathsf{Alph}(x_{|i,k})$ is the set of letters occurring in the section $x_{|i,k}$.

Then the *image* of x by γ is the d-dimensional picture defined as

$$\gamma(x) = \odot_{0 \le n_1 < |x|_1}^1 \left(\cdots \left(\odot_{0 \le n_d < |x|_d}^d \gamma(x(n_1, \dots, n_d)) \right) \cdots \right).$$

DEFINITION

If for all $a \in A$ and all $n \ge 1$, $\gamma^n(a)$ is well-defined from $\gamma^{n-1}(a)$, then γ is said to be a d-dimensional morphism. We can define accordingly a prolongable morphism.

DEFINITION

Let $\gamma \colon \mathcal{B}_d(A) \to \mathcal{B}_d(A)$ be a d-dimensional morphism having the d-dimensional infinite word \mathbf{x} as a fixed point.

This word is shape-symmetric with respect to γ if, for all permutations ν of [1, d], we have, for all $n_1, \ldots, n_d \geq 0$,

$$|\gamma(\mathbf{x}(n_1,\ldots,n_d))| = (s_1,\ldots,s_d)$$

$$\Downarrow$$

$$|\gamma(\mathbf{x}(n_{\nu(1)},\ldots,n_{\nu(d)}))| = (s_{\nu(1)},\ldots,s_{\nu(d)}).$$

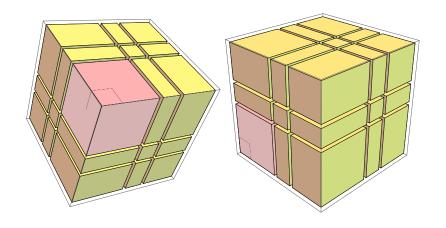
Reconsider our map φ_W (one can indeed prove that it is a d-dimensional morphism having a shape-symmetric fixed point).

					h	d	c	h	d
$\begin{bmatrix} c & d \end{bmatrix}$	i	j	i		i	m	k	i	m
$a \mapsto \frac{a}{1} \mapsto$	c	d	\mathbf{e}	\mapsto	i	j	i	f	b
$\begin{bmatrix} \mathbf{a} \mid b \end{bmatrix}$	a	b	i		c	d	e	h	d
					a	b	i	i	m

sizes: 1, 2, 3, 5

	i	m	i	i	j	i	m	i	
	h	d	h	c	d	h	d	h	
	i	m	i	l	m	i	m	i	
	h	d	c	h	d	h	d	\mathbf{e}	
[—]	i	m	k	i	m	g	b	i	, · · ·
	i	j	i	f	b	i	m	i	
	c	d	e	h	d	h	d	h	
	a	b	i	i	m	i	m	i	

size : 8,...



Initial blocks of some 3-dimensional shape-symmetric picture Maes' thesis p. 107.

THEOREM (MAES 1999)

- ▶ Determining whether or not a map μ : $\mathcal{B}_d(A) \to \mathcal{B}_d(A)$ is a d-dimensional morphism is a decidable problem.
- ▶ If μ is prolongable on a letter a, then it is decidable whether or not the fixed point $\mu^{\omega}(a)$ is shape-symmetric.

THEOREM (DUCHÊNE, FRAENKEL, NOWAKOWSKI, R.)

The image by μ_W of the fixed point $\varphi_W^\omega(a)$ gives exactly the $\mathcal P$ -positions of Wythoff's game.

Sketch of the proof of Maes's results

Cobham, Dumont-Thomas, Maes, Shallit, ...

 $\mathsf{Morphism} \leftrightarrow \mathsf{Automata}$

Links with non-standard numeration systems: J. Shallit (1988), J.-P. Allouche, E. Cateland, et al. (1997), J.-P. Allouche, K. Scheicher, R. Tichy (2000), Marsault–Sakarovitch, M. R., . . .

General Theorem "morphic ⇒ automatic"

Let A be an <u>ordered</u> alphabet. Let $\mathbf{w} \in A^{\mathbb{N}}$ be an infinite word, fixed point $f^{\omega}(a)$ of a morphism $f:A^* \to A^*$.

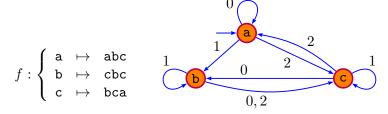
- ▶ associate with f a DFA \mathcal{M} over the alphabet $\{0, \dots, \max |f(b)| 1\};$
- ► *A* is the set of states;
- ▶ the initial state is *a*, all states are final;
- ▶ if $f(b) = c_0 \cdots c_m$, then $b \xrightarrow{j} c_j$, $j \leq m$;
- ▶ consider the language L accepted by \mathcal{M} except words starting with 0:
- genealogically order L: $L = \{w_0 < w_1 < w_2 < \cdots \}$.

The *n*th symbol of \mathbf{w} , $n \geq 0$, is

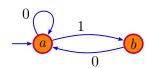
$$\mathcal{M} \cdot w_n$$

Examples (first, in 1D):

▶ Take your favorite k-uniform morphism, the associated regular language is $\{\varepsilon\} \cup \{1, \dots, k-1\}\{0, \dots, k-1\}^*$



▶ Take the Fibonacci morphism $a \mapsto ab$, $b \mapsto a$, the associated regular language is $\{\varepsilon\} \cup 1\{0,01\}^*$



We can do the same in a multidimensional setting.

▶ There are $d \ge 2$ associated regular languages (details missing, idea on the next slide).

Assume that the images of letters have shape (s_1,s_2) , $s_i \leq 2$. Associate with φ an automaton with input alphabet:

we have transitions like

$$\begin{array}{cccc}
\begin{pmatrix} 0 \\ 0 \\ 0 \\ \end{array} & \xrightarrow{s}, & r \xrightarrow{\begin{pmatrix} 1 \\ 0 \\ \end{array}} & t, & r \xrightarrow{\begin{pmatrix} 0 \\ 1 \\ \end{array}} & \underbrace{u}, & r \xrightarrow{\begin{pmatrix} 1 \\ 1 \\ \end{array}} & v.$$

Associated languages — example of product of substitutions

$$f: \left\{ \begin{array}{ccc} a & \mapsto & abc \\ b & \mapsto & cbc \\ c & \mapsto & bca \end{array} \right. \quad g: \left\{ \begin{array}{ccc} 0 & \mapsto & 01 \\ 1 & \mapsto & 0 \end{array} \right.$$

 $f \times g$:

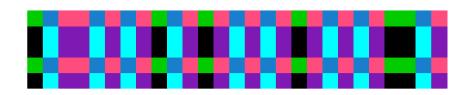
$$(c,0) \mapsto \begin{array}{|c|c|c|c|c|} \hline (b,1) & (c,1) & (a,1) \\ \hline (b,0) & (c,0) & (a,0) \\ \hline \end{array} \quad (c,1) \mapsto \begin{array}{|c|c|c|c|c|} \hline (b,0) & (c,0) & (a,0) \\ \hline \end{array}$$

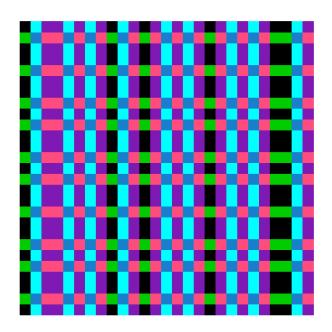
$$\{\varepsilon\} \cup \{1,2\}\{0,1,2\}^* \text{ and } \{\varepsilon\} \cup 1\{0,01\}^*$$

The growth is derived from these languages

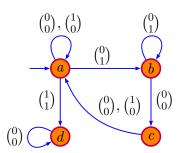
The growth is derived from these languages

The growth is derived from these languages



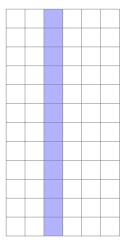


Can this map be extended to a morphism?



Recall the condition (*):

$$\forall i \in \{1, \dots, d\}, \forall k < |x|_i, \forall a, b \in \mathsf{Alph}(x_{i,k}) : |\gamma(a)|_i = |\gamma(b)|_i.$$

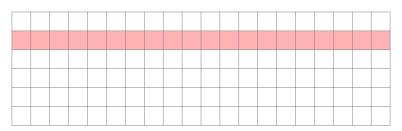


$$\begin{pmatrix} 10 \\ 00 \end{pmatrix}, \begin{pmatrix} 10 \\ 01 \end{pmatrix}, \begin{pmatrix} 10 \\ 10 \end{pmatrix}, \begin{pmatrix} 10 \\ 11 \end{pmatrix}$$
$$\begin{pmatrix} 010 \\ 100 \end{pmatrix}, \begin{pmatrix} 010 \\ 101 \end{pmatrix}, \dots$$
$$\begin{pmatrix} 0^{|w|-2}10 \\ w \end{pmatrix}$$

The image by γ of all these elements should have the same number of columns.

Recall the condition (\star) :

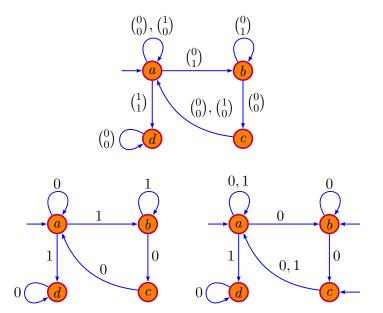
$$\forall i \in \{1,\ldots,d\}, \forall k < |x|_i, \forall a,b \in \mathsf{Alph}(x_{|i,k}): |\gamma(a)|_i = |\gamma(b)|_i.$$



$$\begin{pmatrix} 000 \\ 100 \end{pmatrix}, \begin{pmatrix} 001 \\ 100 \end{pmatrix}, \begin{pmatrix} 010 \\ 100 \end{pmatrix}, \begin{pmatrix} 011 \\ 100 \end{pmatrix}, \begin{pmatrix} 100 \\ 100 \end{pmatrix}, \dots$$

$$\begin{pmatrix} w \\ 0^{|w|-3} \mathbf{100} \end{pmatrix}$$

The image by γ of all these elements should have the same number of rows.



- Take the projections of the DFA A
- We get 2 NFAs: \mathcal{N}_1 and \mathcal{N}_2
- \blacktriangleright The set of initial states is made of those reached by 0^*
- ▶ Determinize (Rabin–Scott's subset construction): \mathcal{D}_1 and \mathcal{D}_2

 $Q = \{q_1, \dots, q_r\}$ is a state of \mathcal{D}_1 reached when reading w,

IFF, in \mathcal{N}_1 , there is a path from I_1 to q_j with label w, $\forall j$,

IFF, in \mathcal{A} , $\forall j$, there is a path from the initial state to q_j with a label of the form

$$\begin{pmatrix} 0 \cdots 0 \boldsymbol{w} \\ z_j \end{pmatrix}$$
.

 $\gamma(q_1), \ldots, \gamma(q_r)$ must have the same number of columns

- ► Take the projections of the DFA A
- We get 2 NFAs: \mathcal{N}_1 and \mathcal{N}_2
- \blacktriangleright The set of initial states is made of those reached by 0^*
- ▶ Determinize (Rabin–Scott's subset construction): \mathcal{D}_1 and \mathcal{D}_2

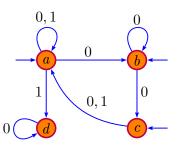
 $Q = \{q_1, \dots, q_r\}$ is a state of \mathcal{D}_2 reached when reading ${\color{red} w}$,

IFF, in \mathcal{N}_2 , there is a path from I_1 to q_j with label ${\color{red} w}$, orall j,

IFF, in \mathcal{A} , $\forall j$, there is a path from the initial state to q_j with a label of the form

$$\begin{pmatrix} z_j \\ 0 \cdots 0 \mathbf{w} \end{pmatrix}$$
.

 $\gamma(q_1), \ldots, \gamma(q_r)$ must have the same number of rows



	state of \mathcal{D}_2	$ \gamma(\cdot) _2$
$\mathcal{D}_2 \cdot \varepsilon$	$\{a, b, c\}$	2, 2, 1
	(/)	2,1
	$\{a, b, d\}$	2, 2, 1
$\mathcal{D}_2 \cdot 100$	$\{a,b,c,d\}$	2, 2, 1, 1

THEOREM (MAES 1999)

▶ If μ is prolongable on a letter a, then it is decidable whether or not the fixed point $\mu^{\omega}(a)$ is shape-symmetric.

IFF the associated languages are the same.

IS THERE SOME TIME LEFT?

THEOREM (DUCHÊNE, FRAENKEL, NOWAKOWSKI, R.)

The image by μ_W of the fixed point $\varphi_W^{\omega}(a)$ gives exactly the \mathcal{P} -positions of Wythoff's game.

We associate with φ an automaton with input alphabet

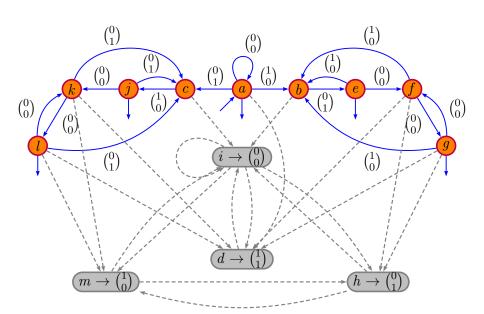
$$\begin{cases} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, & \begin{pmatrix} 1 \\ 0 \end{pmatrix}, & \begin{pmatrix} 0 \\ 1 \end{pmatrix}, & \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{cases}$$

$$\varphi(r) = \begin{bmatrix} u & v \\ s & t \end{bmatrix}, & \begin{bmatrix} s & t \\ s \end{bmatrix}, & \begin{bmatrix} u \\ s \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} s \\ s \end{bmatrix}$$

we have transitions like

$$\begin{array}{cccc}
\begin{pmatrix} 0 \\ 0 \\ 0 \\ \end{array} & \xrightarrow{s}, & r \xrightarrow{\begin{pmatrix} 1 \\ 0 \\ \end{array}} & t, & r \xrightarrow{\begin{pmatrix} 0 \\ 1 \\ \end{array}} & \underbrace{u}, & r \xrightarrow{\begin{pmatrix} 1 \\ 1 \\ \end{array}} & v.$$

From morphism to automaton, we get



1) If all states are assumed to be final, this automaton accepts the words

 $\begin{pmatrix} u \\ v \end{pmatrix}$

where |u| = |v| and u, v are both valid F-representation (possibly padded with zeroes).

2) If we restrict to the "blue" part, this automaton accepts the words

 $\begin{pmatrix} 0w_1\cdots w_\ell \\ w_1\cdots w_\ell 0 \end{pmatrix}$ and $\begin{pmatrix} w_1\cdots w_\ell 0 \\ 0w_1\cdots w_\ell \end{pmatrix}$

where $w_1 \cdots w_\ell$ is a valid F-representation.

3) Now, if the set of final states is $\{a, e, g, j, l\}$, we have the extra condition that $w_1 \cdots w_\ell$ ends with an <u>even</u> number of zeroes.

With Fraenkel's characterization of \mathcal{P} -positions, this concludes the proof.

THEOREM (A. S. FRAENKEL, 1982)

(x, y), with x < y, is a \mathcal{P} -position of Wythoff's game iff $\operatorname{rep}_F(x)$ ends with an even number of zeroes and $\operatorname{rep}_F(y) = \operatorname{rep}_F(x)0$.

Selected references

- J.-P. Allouche, J. Shallit, Automatic sequences. Theory, applications, generalizations. Cambridge Univ. Press (2003).
- V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, Bull. Belg. Math. Soc. 1 (1994).
- É. Charlier, T. Kärki, M. Rigo, Multidimensional generalized automatic sequences and shape-symmetric morphic words, *Discrete Math.* 310 (2010).
- ► E. Duchêne, A.S. Fraenkel, R. Nowakowski, M. Rigo, Extensions and restrictions of Wythoff's game preserving its P-positions, J. Combin. Theory Ser. A 117 (2010).
- A.S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly 89 (1982).
- A. Maes, Morphic predicates and applications to the decidability of arithmetic theories, UMH Univ. Mons-Hainaut, Ph.D. thesis 1999.
- M. Rigo, Formal Languages, Automata and Numeration Systems, vol. 2, Applications to recognizability and decidability. ISTE, London; John Wiley & Sons, (2014).
- A. Siegel, Combinatorial game theory, Graduate Studies in Mathematics, 146, AMS (2013).