Critical exponents of balanced words

Narad Rampersad

Department of Mathematics and Statistics
University of Winnipeg
(joint work with J. Shallit and E. Vandomme)



v

v

v

v

This talk is about two things: repetitions in words and

the balance property of words.

Much (everything?) is known about these things over a

binary alphabet.
So we consider larger alphabets.

But we need to understand the binary case first.



let u be a finite word
the alphabet is usually a finite subset of {0,1,2,---}
the length of w is |ul
the number of times the letter a appears in u is |u|,

a word w (finite or infinite) over an alphabet A is
balanced if for every a € A and every pair u, v of factors

of w with |u| = |v| we have

[fula = Jvla| < 1.



» the word 0020010201 is not balanced since |00200|, = 4
and |10201]y = 2

» the word 01201210210 is balanced



Over the binary alphabet, the class of infinite aperiodic
balanced words coincides with the class of Sturmian words
(Morse and Hedlund 1940). Sturmian words are first

differences of irrational Beatty sequences.



Let v and p be real numbers with 0 < a < 1. A (slow) Beatty

sequence is a sequence of the form

([na + p])nz1 or (Tna + pl)nz1.

We consider only the case where « is irrational.



For « = v/2 — 1 and p = 0 the Beatty sequence

([na + p|)n>1 is the sequence
0,0,1,1,2,2,2,3,3,4,4,4,5,5,6,6,7,7,7,8,8,9,9,9, . ..

The corresponding Sturmian sequence is the sequence of first

differences:

0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,. ..



Why is the Sturmian word balanced? An integer j appears in

the Beatty sequence if and only if

j = lia+p]
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The number of distinct j's of the form [iav + p| for

a <1 < a-+nis the number of integers in the interval

p—a—n p—a
a T«

which is




» Any block of n consecutive terms in a Beatty sequence

contains either |n/a| or [n/a] distinct terms.

» Any block of n — 1 consecutive terms in the
corresponding first difference sequence has either
In/a] —1or [n/a] —11's.

» Hence this binary sequence is balanced.
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We are interested in repetitions in balanced words.

Let v be a finite word and write u = upuy - - - U,,—1, Where

the wu; are letters.

A positive integer p is a period of w if u; = u;4,, for all 4.
Let e = |u|/p and let z be the prefix of u of length p.

z is a fractional root of u.

We say that u has exponent e and write u = z°.

e.g., 01011010 = (01011)%/5

A square (resp. cube) is a repetition with exponent 2
(resp. 3)



The critical exponent of an infinite word w is

E(w) = sup{r € Q : there is a finite, non-empty factor of w

with exponent r}.



For example, the word
w = 012021012102012021 - - -
obtained by iterating the substiution
0 — 012, 1 — 02, 2—1

contains no squares, but has repetitions with exponents

arbitrarily close to 2, so F(w) = 2.



Dejean’s Theorem

Given an alphabet A of size k, the least critical exponent

among all infinite words over A is
7/4, k=3

7/5, k=4
k/(k—1), k=2o0rk>5.

However, imposing the balance property makes it much harder

to avoid repetitions.



» To understand the repetitions in a Sturmian word, we

need another equivalent definition of Sturmian words.

» Let o be an irrational real number between 0 and 1,

called the slope.

» Suppose « has continued fraction expansion
o = [do, dl, d2, dg, .. ]



The characteristic Sturmian word with slope « is the infinite
word ¢, obtained as the limit of the sequence of standard

words s,, defined by
S0 =0, s = Odl_ll, Sp = si"_lsn_g, n > 2.
For n > 2, we also define the semi-standard words
Spt = st 8o,

where 1 <t < d,.



One characteristic Sturmian word is of particular significance.
Let ¢ = (1 +1/5)/2. The Fibonacci word is the characteristic

Sturmian word
cp = 010010100100101001010010010100 - - -

with slope 6 := 1/¢? = [0,2,1]. We call the corresponding

standard words the finite Fibonacci words:

f(] - O, f1 — 01, f2 - 010,



the word f; has length F;,, (the (i 4+ 2)-th Fibonacci
number) and has Fj;; 0's and F; 1's

Mignosi and Pirillo (1992) showed that E(cy) = 2 + ¢.
The more general results of Damanik and Lenz (2002)
and Justin and Pirillo (2001) show that this is minimal
over all Sturmian words (i.e., all aperiodic balanced binary

words).

What about balanced words over larger alphabets?
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An infinite word y has the constant gap property if, for
each letter a, there is some number d such that the
distance between successive occurrences of a in y is
always d.

This is stronger than being periodic.

(0120)“ is periodic but is not a constant gap word
(contains both 00 and 0120)

(0102)“ is a constant gap word



Theorem (Graham 1973; Hubert 2000)

A recurrent aperiodic word x is balanced if and only if = is
obtained from a Sturmian word u over {0, 1} by the following
procedure: replace the positions containing 0's in u by a
periodic sequence y with constant gaps over some alphabet A
and replace the positions containing 1's in u by a periodic
sequence y' with constant gaps over some alphabet B, disjoint
from A.



e.g., take the Sturmian word

v = 0101001010010101001010010101001010010100 - - - |
y = (01)“ and y' = (2324)“, then

x = 0213012041021302104120130214012031021401 - - -

is balanced.



From the construction it is clear that to understand the
repetitions in the word = one has to understand the repetitions

in the underlying Sturmian word .



A word z is a conjugate of a word y if we can write x = uv

and y = vu for some words u and v.



Theorem (Damanik and Lenz 2002)

Let w be a primitive factor of a Sturmian word .

» If w? is a factor of u then w is a conjugate of either a

standard word s, or a semi-standard word s ;.
» If w? is a factor of u then w is a conjugate of a standard

word Sj,.



» To create a balanced word with repetitions of small
exponent, we try to choose the periodic words y and ¢’ in
such a way that the Hubert construction “breaks up” the

repetitions in u.

» The analysis depends on understanding the number of 0's
and 1's in the standard and semi-standard words modulo

the periods of y and 7/.



Proposition

There is an infinite ternary balanced word x3 with critical

exponent

2
E(z3) =2 + g ~ 2.7071.



» leta=+v2-1=10,2].
» Let ¢, be the characteristic Sturmian word with slope a.

» So ¢, is the limit of the standard words s; defined by

So =0, 81 =351, 5= sz_lsk,g, k> 2.



Define x3 by replacing the 0's in ¢, by (01)“ and by replacing
the 1's with 2's. We have

s1=01, s =01010,  s3=(01010)°01,...
and
co = 010100101001010100101001010100101001010010 - - -
and

3 = 021201202102120210212012021201202102120 - - - .



» The critical exponent of ¢, is 3 + V2.

» Our goal is to show that the critical exponent of x5 is
V2
2+ 2.



» Let (2/)¢ be a repetition of exponent e > 2 in z3 (e € Q).

» Apply the morphism that sends {0,1} — 0 and 2 — 1 to
x3.

» We see that there is a corresponding repetition z¢ of the

same length in c,.



0212012 0212012 — 0101001 0101001



» Suppose that z is primitive.

» 2 is either a conjugate of one of the standard words s,
defined above or a conjugate of one of the semi-standard
words

Sk1 = Sk—15k—2, Kk >2.



The lengths of the standard and semi-standard words are given

in terms of ¢,, defined by:

p_n = [d0>d17d27d3a s 7dn]7

an

where

p—2=0, p1=1 p,=dupn1+prsforn>0;
g—2=1, q¢q1=0, ¢ =dngn-1+ gnoforn>0.



|Sn‘ = {n and ’5n,1| = Qn-1 T qn-2



The convergents have the following approximation property:

1 1
qndn+1 qy

Pn
o — —

dn

<

The following fact is classical:

q’;“ = [dpy1, dn, ..., di]. (2)



We return to a repetition (2')¢ in x3 and the
corresponding z€ in ¢,.

Suppose that z is a conjugate of a standard word s.
Note that [sg|o is odd for every k > 1.

Hence |z|o is odd.

Recall: 2’ is obtained by replacing each 0 in z with 0 or 1

alternately and the 1's with 2's.

It follows that 2’2’ cannot occur in x3 so there is no

repetition (2')¢ in 3.



010100101001 010100101001 — 021201202102 120210212012



Now suppose that z is a conjugate of a semi-standard
word.

Then |z| = qx_o + q1_1 for some k > 2.

Justin and Pirillo (2001) gave precise technical results
about the exponents of certain kinds of repetitions in
Sturmian words.

One of these results is that the longest factor of ¢, with

this period has length 2(qx_2 + qx—1) + qx—1 — 2.



It follows that for a repetition z¢ where z is a conjugate of a

semi-standard word,

. < 2(Qr—2 + Qe—1) + Q-1 — 2

- Qk—2 + Qr—1
4 —2
_9o qk—1
Qk—2 + qr—1

Qk—l/Qk—z - 2/%—2

— 94
1+ @1/ Qr—2



Now by (2) we have that gx_1/qr—o converges to
2,2] = /2 + 1, and by (1) we have

Qo—1/qr—2 < V2414 1/q;_,.



Thus, we have

V24+1+1/¢2 5 —2/qks

e <2+
\/§+2—1/q2_2

The fraction on the right clearly tends to
(vV2+1)/(V/2+2) =+/2/2 as k — oo, and is increasing for
k > 3, so the convergence is from below. Thus ¢ < 2 + \/5/2



Indeed, for every k > 2, there are repetitions 2¢ in the

Sturmian word ¢, with exponent

q4—2 _ 2
e:2+(Qk1 )/kak—>oo 2+£7
14 Qr—1/qr—2 2

where the convergence is from below.



Now if 2 is the conjugate of a semi-standard word s, ;, we
note that sy 1o is even for every k > 2 and so every such
repetition z¢ in ¢, gives rise to a repetition (2)¢ in z3, since

|z|o in this case is even.



0101001 0101001010 — 0212012 0212012 021
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Finally, suppose that 2¢ is a repetition where 2 is not
primitive.
From existing results we can calculate that the critical

exponent of ¢, is 3 + v/2.
So z cannot have exponent > 3.

Thus z is a square and we have

3 2 2

¢ 2 2

We conclude that F(z3) =2+ ‘/75



For larger alphabets, we construct balanced words according to

this table.
ko« cf. Yy Y
3 V21 [0,2] (o)~ 2¢
4 1/¢? [0,2,T] (o1  (23)
5 V2-1 [0,2] (0102)~  (34)~
6 (18—2v6)/101 [0,1,2,1,1,1,1,1,2] 0® (123415321435)~
7 (63—-+10)/107 [0,1,1,3,T,2,1] (01)%  (234526432546)*
8 (23+2)/31 [0,1,3,1,2] (01)*  (234526732546237526432576)~
9 (23-+2)/31 [0,1,2,3,2] (01 (234567284365274863254768)~
10 (109 +v/13)/138 [0,1,4,2,3] (01)¢  (234567284963254768294365274869)

Table: Periodic words y and 3/ for the construction of xy,



We have shown

E(z3) = 2+ = ~ 2.7071

[

We can also prove that

E(z4) =1+ = ~ 1.8090.

(CIRSS

For k > 5, computer calculations suggest that

k—2
E = —
(2r) = —5
For values of k up to 9 (except for 4), we can show that these

critical exponents are the smallest possible over k letters.



» We show optimality by a backtracking computer search

over the tree of standard pairs.

» This is the tree of pairs with root (0, 1) and each vertex

(u,v) has children (u,uv) and (vu,v).



(0,01) (10,1)

(0,001)]  [(010,00)] [(10,100)] [(110,1)




» All finite balanced binary words appear in this tree.

» As we search, we take the longer of u, v and try all
possible replacements of the 0's and 1's with constant

gap sequences.

» If every replacement results in a word with too large a

critical exponent, we backtrack.



Why can’t we prove the claimed critical exponents for
k > 57
We have less information for repetitions z¢ in Sturmian

words that have exponent e < 2.

We need to know the number of 0's and 1's in 2z modulo

the periods of y and v’ respectively.

If e > 2, then z is an integer power of a conjugate of a
standard or semi-standard word and we can count the

number of 0's and 1's in such words.



But if e < 2 then we cannot be sure that z is an integer

power of a conjugate of a standard or semi-standard word.

Saari showed that this is the case if z is the minimal
fractional root of the repetition.
But we have no information about non-minimal periods of

factors of Sturmian words.

So the main open problem is to prove the conjectured

critical exponents for k > 5.



We can overcome this difficulty for the 4-letter alphabet with
the following technical lemma, but this approach fails for

larger alphabets.

Lemma

Let w be a factor of the Fibonacci word. Write w = 2/, where
f € Q and |z| is the least period of w. Suppose that w has
another representation w = z¢, where e € QQ, z is primitive,
and |z| < |z|]. Then e <1+ ¢/2.



So the main open problem is to prove the conjectured critical

exponents for k£ > 5.



The End



