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Alphabet ¥: finite, ordered, constant size o

e Given string s, the Parikh vector of s pv(s) is vector of multiplicities
of characters
e Given a Pv p, its order is the sum of its entries = length of a string

with Pv p
Ex. s = aabaccba over X = {a, b, c}, then pv(s) = (4,2, 2), order 8.
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e Two strings over the same alphabet are Parikh equivalent (a.k.a.
abelian equivalent) if they have the same Parikh vector (i.e. if they
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Abelian stringology

In Abelian stringology, equality is replaced by Parikh equivalence.

e Jumbled Pattern Matching

e abelian borders

e abelian periods

e abelian squares, repetitions, runs

e abelian pattern avoidance

e abelian reconstruction

e abelian problems on run-length encoded strings

e abelian complexity

Zs. Liptak, P. Burcsi, W.F. Smyth On the Parikh-de-Bruijn grid Words & Complexity 2018 3/32



Abelian stringology

In this talk, we introduce a new tool for attacking abelian problems.
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Abelian stringology

In this talk, we introduce a new tool for attacking abelian problems.

But first: What's so different about abelian problems?
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An example problem
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Parikh-de-Bruijn strings

Recall: A de Bruijn sequence of order k over alphabet X is a string over ¥ which
contains every u € ¥k exactly once as a substring.
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Parikh-de-Bruijn strings

Recall: A de Bruijn sequence of order k over alphabet X is a string over ¥ which
contains every u € ¥ ¥ exactly once as a substring.

Ex. X = {a,b}, order 2: aabba, order 3: aaababbbaa

We define the abelian analogue:

Def. A Parikh-de-Bruijn string of order k (a (k,o)-PdB-string) is a string s over
an alphabet of size o s.t.

V p Parikh vector of order k 3I(i,j) s.t. pu(si---s;)) =p

k o
Ex. aabbcca is a (2, 3)-PdB-string
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Parikh-de-Bruijn strings

Classical case: De Bruijn sequences exist for every ¥ and k.
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Parikh-de-Bruijn strings

Classical case: De Bruijn sequences exist for every ¥ and k.

e correspond to Hamiltonian paths in the de Bruijn graph of order k
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Parikh-de-Bruijn strings

Classical case: De Bruijn sequences exist for every ¥ and k.

e correspond to Hamiltonian paths in the de Bruijn graph of order k

e and to Euler-paths in the de Bruijn graph of order k — 1

order 2: aabba
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Parikh-de-Bruijn strings

Classical case: De Bruijn sequences exist for every ¥ and k.

e correspond to Hamiltonian paths in the de Bruijn graph of order k

e and to Euler-paths in the de Bruijn graph of order k — 1
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Parikh-de-Bruijn strings

Abelian case:

k o
e aabbcca is a (2,3)-PdB-string
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Parikh-de-Bruijn strings

Abelian case:

k o
e aabbcca is a (2,3)-PdB-string
e abbbcccaaabce is a (3, 3)-PdB-string
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Parikh-de-Bruijn strings

Abelian case:

k o
e aabbcca is a (2, 3)-PdB-string
e abbbcccaaabce is a (3, 3)-PdB-string
e but no (4, 3)-PdB-string exists
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Parikh-de-Bruijn strings

Abelian case:

k o
aabbcca is a (2, 3)-PdB-string
abbbcccaaabe is a (3, 3)-PdB-string
but no (4, 3)-PdB-string exists
and no (2, 4)-PdB-string exists
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The Parikh-de-Bruijn grid
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Recall: de Bruijn graph dByx = (V, E), where V = ¥* and (xu,uy) € E
forall x,y € ¥ and u € £k! N.B. edges = (k + 1)-length strings

edges = one-character shifts
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Recall: de Bruijn graph dBy = (V, E), where V = ¥¥ and (xu,uy) € E
forall x,y € ¥ and u € £k! N.B. edges = (k + 1)-length strings

edges = one-character shifts
A straightforward generalization to Pv's gives:
21 12

30@ QQ @03

edges = one-character shifts, undirected edges
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Recall: de Bruijn graph dByx = (V, E), where V = ¥¥ and (xu,uy) € E
forall x,y € ¥ and u € £k! N.B. edges = (k + 1)-length strings

edges = one-character shifts

A straightforward generalization to Pv's gives: NO: edges = (k + 1)-order Pv's!

N

11

21 12

edges = one-character shifts, undirected edges

N

IS
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Let's look at another example: Here, 0 = 3, k = 2.

In the abelian version, several edges have the same label (i.e. here: 3-order Pv).
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Turns out the right way to generalize de Bruijn graphs is the
Parikh-de-Bruijn grid:
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For o = 4, k = 5, the Parikh-de-Bruijn grid looks like this:
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The Parikh-de-Bruijn grid

PdB-grid:

e \/ = k-order Pv's 400

004

031 022 013

(4, 3)-grid; loops not included in figure
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The Parikh-de-Bruijn grid

PdB-grid:
e \/ = k-order Pv's

500
400

e pqg € E iff exist x,y € X s.t.
p=qg-—x+y

0
050 041 031 032 022 023 013 014 005

(4, 3)-grid; loops not included in figure
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The Parikh-de-Bruijn grid

PdB-grid:
e \/ = k-order Pv's

e pqg € E iff exist x,y € X s.t.
p=q—x+y

e undirected edges (or:
bidirectional edges)

04
050 041 031 032 022 023 013 014 005

(4, 3)-grid; loops not included in figure
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The Parikh-de-Bruijn grid

PdB-grid:
o V = k-order Pv's
e pqg € E iff exist x,y € X s.t.
p=qg-—x+y

e undirected edges (or:
bidirectional edges)

® |oops at every node,
different one for each
non-zero character

04
050 041 031 032 022 023 013 014 005

(4, 3)-grid; loops not included in figure
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The Parikh-de-Bruijn grid

PdB-grid:

V = k-order Pv's

pqg € E iff exist x,y € X s.t.
p=q—x+y

undirected edges (or:
bidirectional edges)

loops at every node,
different one for each
non-zero character

(k + 1)- and (k — 1)-order
Pv's = (o — 1)-simplices

(triangles for o = 3, 056*0 041 031 032 022 023 013 o014 tos
tetrahedra for o = 4 etc.)

(4, 3)-grid; loops not included in figure

Zs. Liptak, P. Burcsi, W.F. Smyth On the Parikh-de-Bruijn grid Words & Complexity 2018 14 / 32



The Parikh-de-Bruijn grid

PdB-grid:

V = k-order Pv's

pqg € E iff exist x,y € X s.t.
p=q—x+y

undirected edges (or:
bidirectional edges)

loops at every node,
different one for each
non-zero character

(k + 1)- and (k — 1)-order
Pv's = (o — 1)-simplices

(triangles for o = 3, 056*0 041 031 032 022 023 013 o014 tos
tetrahedra for o = 4 etc.)

(4, 3)-grid; loops not included in figure

Zs. Liptak, P. Burcsi, W.F. Smyth On the Parikh-de-Bruijn grid Words & Complexity 2018 14 / 32



The Parikh-de-Bruijn grid

The (4,3)-PdB-grid The (4,4)-PdB-grid
500
400

\"“"

""""""KN\

040 004
050 041 031 032 022 023 013 014 005

vertices: k-order Pv's (vertices), downward triangles/tetrahedra: (k + 1)-order
Pv's, (upward triangles/tetrahedra: (k — 1)-order Pv's.
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The Parikh-de-Bruijn grid

The diagonal section of the integer grid with the hyperplanes H, (green), Hyt1
(blue), and Hy_1 (yellow), for k =6 and o = 3.
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Back to the example problem
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More differences

Classical case: (dByx) One-to-one correspondence: walks and strings.
Abelian case: Every string corresponds to a walk in the PdB-grid, but not
every walk corresponds to a string.
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More differences

Classical case: (dByx) One-to-one correspondence: walks and strings.
Abelian case: Every string corresponds to a walk in the PdB-grid, but not
every walk corresponds to a string.

Classical case: De Bruijn sequences exist for every k and o.
Abelian case: PdB-strings do not exist for every k and o.

(N.B. Not all PdB-strings come from circular strings = universal cycles!)
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Back to Parikh-de-Bruijn strings

Theorem 1
No (k,3)-PdB strings exist for k > 4.

Theorem 2
A (2,0)-PdB string exists if and only if ¢ is odd.

Theorem 3
A (3,0)-PdB string exists if and only if = 3 or o not a multiple of 3.

Zs. Liptak, P. Burcsi, W.F. Smyth On the Parikh-de-Bruijn grid Words & Complexity 2018 19 / 32



Theorem 1
No (k,3)-PdB strings exist for k > 4.

Lemma 1
If the walk induced by string w does not use any loops, then for all i:

Wi # Witk

Proof

Otherwise we would have two consecutive occurrences of the same Pv p,
thus using a loop at p.
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Theorem 1: No (k, 3)-PdB strings exists for k > 4. (Proof uses Lemma 1.)

Px = (ku 0, 0)

p}’:(07k70) pz=(0,0,k)
Px+k = (07 % )
w = aaa---a bbb---b- ccc- - C
—_— — —
k k k
T T T
position x position y position z
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Example 2: Covering strings

Classical case: If s is a (classical) de Bruijn sequence of order k, then it
also contains all (k — 1)-length strings as substrings.
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Example 2: Covering strings
Classical case: If s is a (classical) de Bruijn sequence of order k, then it
also contains all (k — 1)-length strings as substrings.
Abelian case: not always true, e.g.
aaaaabbbbbcaaaadbbbcccccdddddaaaccdbecbaccaccddbddbadacddbbbb

is a (5,4)-PdB-string but is not (4,4)-covering: no substring with Pv
(1,1,1,1).
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Example 2: Covering strings
Classical case: If s is a (classical) de Bruijn sequence of order k, then it
also contains all (k — 1)-length strings as substrings.
Abelian case: not always true, e.g.
aaaaabbbbbcaaaadbbbcccccdddddaaaccdbecbaccaccddbddbadacddbbbb

is a (5,4)-PdB-string but is not (4,4)-covering: no substring with Pv
(1,1,1,1).

Theorem 4

For every 0 > 3 and k > 4, there exist (k, o)-covering strings which are
not (k — 1, o)-covering.
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Experimental results

k | o | string length

(excess)
2 | 3 | aabbcca 7 (0)
3 | 3 | abbbcccaaabe 12 (0)
4 | 3 | aaaabbbbccccaacabeb 19 (1)
5 | 3 | aaaaabbbacccccbbbbbaacaacch 27 (2)
6 | 3 | aaaabccccccaaaaaabbbbbbeccbbeabbaca 35 (2)
7 | 3 | aabbbccbbcccabacaaabcbbbbbbbaaaaaaacccccccba 44 (2)
2 | 4 | aabbcadbccdd 12 (1)
3 | 4 | aaabbbcaadbdbccadddcce 22 (0)
4 | 4 | aabbbbcaacadbddbccacddddaaaabdbbccccdd 38 (0)
5 | 4 | aaaaabbbbbcaaaadbbbeccccdddddaaaccdbebaccaccddbddbadacddbbbb | 60 (0)
2 | 5 | aabbcadbeccddeea 16 (0)
3 | 5 | aaabbbcaadbbeaccbdddcccebededadceeeaa 37 (0)
4 5 | aaaabbbbcaaadbbbeaaccbbddaaeaebcccadbeeeadddcccceeeedddd. . . 73 (O)
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Conclusion and open problems

e new tool for modeling and solving abelian problems
e find good characterization for walks which correspond to strings

e many open problems on PdB- and covering strings, e.g.

e For which ¢ and k do PdB-strings exist? (We answered this question

only for some special cases.)

e What is the length of a shortest covering string when no PdB-string
exists, e.g. k=3, 0 =67

e What is the minimum proportion of (k — 1)-order Pv's covered by a
k-covering string?

e apply PdB-grid to other abelian problems

e paper on Arxiv
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Appendix
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The Parikh-de-Bruijn grid
k=4 0=3
(k+1)]a]3322

1122

1111

aabacabb
211 k 32221

& 11112

01111
(k=1

2121

1101

0111
Walk corresponding to aabacabb. (k + 1)- and (k — 1)-order Pv's: triangles
incident to the edges traversed by the walk. The (k 4+ 1) and (k — 1)-order Pv's
for loops (same k-order Pv twice) lie in opposite direction, hence the name bow.

o o

O o plo T e
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Parikh-de-Bruijn and covering strings
Theorem 2
A (2,0)-PdB string exists if and only if ¢ is odd.
Proof

Pv's of order 2 either form (0...0, é, 0..0) or (0...0, i,O...O, Jl, 0..0). So we need
exactly one substring aa for all a € ¥, and either ab or ba for all a,b € ¥.
Consider the undirected complete graph G = (V/, E) with loops where V =%
(N.B.: not the PdB-grid!): an Euler path exists iff o is odd.

20000 O
a
11000 10001
/ \

02000 " D € 00002

0110& 00011
d

€
00200 O 00110 QOOO%
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Example 2: Covering strings
Next best thing: covering strings.
Def.
e We call a string s (k, o)-covering if
V p Parikh vector of order k 3(i,j) s.t. pv(si---s;) =p
(There is at least one substring in s which has Pv p.)
o The excess of sis: |s| — (“"F 1) +k—1.
—_————
length of a PdB-string

Ex.

e aaaabbbbccccaacabeb is a shortest (4, 3)-covering string, with
excess 1.
e aabbcadbccdd is a shortest (2, 4)-covering string, with excess 1.
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Example 2: Covering strings

Classical case: If s is a (classical) de Bruijn sequence of order k, then it
also contains all (k — 1)-length strings as substrings.

For PdB-strings, this is not always true, e.g.
aaaaabbbbbcaaaadbbbcccccdddddaaaccdbecbaccaccddbddbadacddbbbb

is a (5,4)-PdB-string but is not (4, 4)-covering: no substring with Pv
(1,1,1,1).

Theorem 4
For every 0 > 3 and k > 4, there exist (k, o)-covering strings which are
not (k — 1, o)-covering.
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The Parikh-de-Bruijn grid

Lemma 2

A set of k-order Parikh vectors is realizable if and only if the induced
subgraph in the k-PdB-grid is connected.

realizable = exists string with exactly these k-order sub-Pv's.

Proof sketch

= clear.
< Use loops until undesired character x exits, replace by new character y.
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Parikh-de-Bruijn and covering strings

Theorem 4

For every 0 > 3 and k > 4, there exist (k, o)-covering strings which are
not (k — 1, 0)-covering.

Proof

w = aaaaabbbbbcabbaaacacbbcbccacaccccbecccc

General construction:

e remove (k — 1)-order Pv
p=(k-3,1,1,0,...,0) with
incident edges and vertices

e the rest is connected, hence a
string exists (Lemma 2)

e add vertices of p without
traversing edges incident to p

e can be done by detours from
corners of PdB-grid
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