Relative Watson-Crick Primitivity of Words

Manasi S. Kulkarni

Department of Mathematics Indian Institute of Technology Madras, India

Joint work with Lila Kari and Kalpana Mahalingam

February 22, 2018

Introduction

Motivation

- Pattern matching and text compression algorithms: Detection of repetitions in a string
- Tandem repeats: Biological and medical significance
- Information equivalence between DNA strands
- Relatively prime numbers

Structure of DeoxyriboNucleic Acid

Notations

- \bullet Σ :- Alphabet
- A mapping $\theta: \Sigma^* \to \Sigma^*$ is said to be a morphism if $\theta(uv) = \theta(u)\theta(v)$, an antimorphism if $\theta(uv) = \theta(v)\theta(u)$, and an involution if $\theta(\theta(u)) = u$ for all $u, v \in \Sigma^*$.
- $|u|_a$:- Number of occurrences of $a \in \Sigma$ in $u \in \Sigma^+$
- $\bullet |u|_{a,\theta(a)} = |u|_a + |u|_{\theta(a)}$

Primitive Words

A word $u \in \Sigma^+$ is said to be primitive if $u = x^m$ for $x \in \Sigma^+$ implies m = 1 and u = x.

 $\lambda(u)$: The primitive root of u

Primitive Words

A word $u \in \Sigma^+$ is said to be primitive if $u = x^m$ for $x \in \Sigma^+$ implies m = 1 and u = x.

 $\lambda(u)$: The primitive root of u

θ -Primitive Words (Czeizler et al.)

A θ -power of u is a word of the form $u_1u_2\cdots u_n$ for some $n\geq 1$, where $u_1=u$ and $u_i\in\{u,\theta(u)\}$ for $2\leq i\leq n$.

A word is said to be θ -primitive if it's not a θ -power of another word.

 $\rho_{\theta}(u)$: θ -primitive root of u

 Q_{θ} : Set of all θ -primitive words

Primitive Words

A word $u \in \Sigma^+$ is said to be primitive if $u = x^m$ for $x \in \Sigma^+$ implies m = 1 and u = x.

 $\lambda(u)$: The primitive root of u

θ -Primitive Words (Czeizler et al.)

A θ -power of u is a word of the form $u_1u_2\cdots u_n$ for some $n\geq 1$, where $u_1=u$ and $u_i\in\{u,\theta(u)\}$ for $2\leq i\leq n$.

A word is said to be θ -primitive if it's not a θ -power of another word.

 $\rho_{\theta}(u)$: θ -primitive root of u

 Q_{θ} : Set of all θ -primitive words

Example

Let $\Sigma = \{A, C, G, T\}$ and θ be an antimorphic involution such that $\theta(A) = T$, $\theta(G) = C$ and vice versa. Then $u_1 = ATT$ is not θ -primitive, however $u_2 = ACTG$ is a θ -primitive word.

Relative θ -Primitivity

Let $u, v \in \Sigma^*$ and let θ be an (anti)morphic involution on Σ^* . Then $(u, v)_{\theta}$ is defined as:

$$(u,v)_{ heta} = egin{cases} x & ext{if }
ho_{ heta}(u) =
ho_{ heta}(v) = x, \ x \in \Sigma^+ \ \lambda & ext{otherwise} \end{cases}$$

Relative θ -Primitivity

Let $u, v \in \Sigma^*$ and let θ be an (anti)morphic involution on Σ^* . Then $(u, v)_{\theta}$ is defined as:

$$(u,v)_{ heta} = egin{cases} x & ext{if }
ho_{ heta}(u) =
ho_{ heta}(v) = x, \ x \in \Sigma^+ \ \lambda & ext{otherwise} \end{cases}$$

If $(u, v)_{\theta} = \lambda$, then u and v are said to be relatively θ -primitive words, denoted by $u \perp_{\theta} v$.

Relative θ -Primitivity

Let $u, v \in \Sigma^*$ and let θ be an (anti)morphic involution on Σ^* . Then $(u, v)_{\theta}$ is defined as:

$$(u,v)_{ heta} = egin{cases} x & ext{if }
ho_{ heta}(u) =
ho_{ heta}(v) = x, \ x \in \Sigma^+ \ \lambda & ext{otherwise} \end{cases}$$

If $(u, v)_{\theta} = \lambda$, then u and v are said to be relatively θ -primitive words, denoted by $u \perp_{\theta} v$.

For $x \in \Sigma^+$, if $\rho_{\theta}(u) = \rho_{\theta}(v) = x$, then u and v are not relatively θ -primitive, denoted by $u \not\perp_{\theta} v$.

Example

```
Let \Sigma = \{a, b, c\} and \theta be an antimorphic involution such that \theta(a) = b and vice versa, and \theta(c) = c. Let u = abccababc, v_1 = abcc, v_2 = abcabc. Then (u, v_1)_{\theta} = (abccababc, abcc)_{\theta} = \lambda, i.e., u \perp_{\theta} v_1. (u, v_2)_{\theta} = (abccababc, abcabc)_{\theta} = abc, since, \rho_{\theta}(u) = \rho_{\theta}(v_2) = abc, i.e., u \not\perp_{\theta} v_2.
```

Equivalence Relation Properties

Let θ be an (anti)morphic involution over Σ^* .

The relation \perp_{θ} is symmetric on Σ^* and transitive on Q_{θ} . However the relation \perp_{θ} is not reflexive on Σ^* .

Equivalence Relation Properties

Let θ be an (anti)morphic involution over Σ^* .

The relation \perp_{θ} is symmetric on Σ^* and transitive on Q_{θ} . However the relation \perp_{θ} is not reflexive on Σ^* .

The relation $\not\perp_{\theta}$ is an equivalence relation on Σ^+ .

Associativity and Commutativity

Associativity

For (anti)morphic involution θ over Σ^* , and $u, v, w \in \Sigma^+$, $((u, v)_{\theta}, w)_{\theta} = (u, (v, w)_{\theta})_{\theta}$

Associativity and Commutativity

Associativity

For (anti)morphic involution θ over Σ^* , and $u, v, w \in \Sigma^+$, $((u, v)_{\theta}, w)_{\theta} = (u, (v, w)_{\theta})_{\theta}$

For $u, v \in \Sigma^+$, u is said to θ -commute with v if $uv = \theta(v)u$.

Commutativity

Let θ be a morphic involution over Σ^* and $u, v, w \in \Sigma^+$ be such that $vw = \theta(w)v$. Then,

- **1** $u \perp_{\theta} \{v, \theta(v)\}$ implies $u \perp_{\theta} w$
- $u \perp_{\theta} \{w, \theta(w)\}$ implies $u \perp_{\theta} v$

Associativity and Commutativity

Associativity

For (anti)morphic involution θ over Σ^* , and $u, v, w \in \Sigma^+$, $((u, v)_{\theta}, w)_{\theta} = (u, (v, w)_{\theta})_{\theta}$

For $u, v \in \Sigma^+$, u is said to θ -commute with v if $uv = \theta(v)u$.

Commutativity

Let θ be a morphic involution over Σ^* and $u, v, w \in \Sigma^+$ be such that $vw = \theta(w)v$. Then,

- **1** $u \perp_{\theta} \{v, \theta(v)\}$ implies $u \perp_{\theta} w$
- $u \perp_{\theta} \{w, \theta(w)\}$ implies $u \perp_{\theta} v$

Does not hold for an antimorphic involution!

Words with Common θ -Primitive Root

For words u and v, uv = vu if and only if u and v share the common primitive root

Words with Common θ -Primitive Root

For words u and v, uv = vu if and only if u and v share the common primitive root

Proposition

Let θ be a morphic involution over Σ^* and let $u, v \in \Sigma^+$. If for some $x \in \Sigma^+$ we have that $(uv, vu)_{\theta} = x$ then $(u, v)_{\theta} = x$, and conversely.

Decidability

Theorem

Let θ be (anti)morphic involution over Σ^* and $u, v \in \Sigma^+$ be two words with $u \neq v$. It is decidable, in $\Theta(n^2 \lg n)$ time, whether $u \perp_{\theta} v$, where $n = \max\{|u|, |v|\}$.

Language Properties

$$L_{\theta,\lambda}(x) = \{ w \in \Sigma^* | w \perp_{\theta} x \}$$

$$L_{\theta}(x) = \{ w \in \Sigma^* | w \not\perp_{\theta} x \}$$

Language Properties

$$L_{\theta,\lambda}(x) = \{ w \in \Sigma^* | w \perp_{\theta} x \}$$

$$L_{\theta}(x) = \{ w \in \Sigma^* | w \not\perp_{\theta} x \}$$

Theorem

For a given (anti)morphic involution θ and $x \in \Sigma^+$, the languages $L_{\theta}(x)$ and $L_{\theta,\lambda}(x)$ are regular.

Binary Word (BW) Operation - θ -catenation

Binary Word (BW) Operation - θ -catenation

For (anti)morphic involution θ on Σ^* and two words $u, v \in \Sigma^*$, the binary word operation of θ -catenation is defined as

$$u \odot v = \{uv, u\theta(v)\}$$

Binary Word (BW) Operation - θ -catenation

For (anti)morphic involution θ on Σ^* and two words $u, v \in \Sigma^*$, the binary word operation of θ -catenation is defined as

$$u \odot v = \{uv, u\theta(v)\}$$

Proposition

Let θ be (anti)morphic involution over Σ^* and $u, v \in \Sigma^+$ be such that $u \perp_{\theta} \{v, \theta(v)\}$. Then for all $x \in u \odot v$, we have that $x \perp_{\theta} u$.

Proposition

Let θ be (anti)morphic involution over Σ^* and $u, v \in \Sigma^+$ be such that $u \perp_{\theta} v$. Then for all $x \in u \odot v$, we have that $x \perp_{\theta} v$.

BW Operation - Shuffle

Given $u, v \in \Sigma^+$, their shuffle $u \sqcup v$ is defined as the set of all words of the form $u_1v_1 \cdots u_kv_k$ such that $u = u_1 \cdots u_k, v = v_1 \cdots v_k$ where $u_i, v_i \in \Sigma^*$ for $1 \leq i \leq k$.

BW Operation - Shuffle

Given $u, v \in \Sigma^+$, their shuffle $u \sqcup v$ is defined as the set of all words of the form $u_1v_1 \cdots u_kv_k$ such that $u = u_1 \cdots u_k, v = v_1 \cdots v_k$ where $u_i, v_i \in \Sigma^*$ for $1 \leq i \leq k$.

Proposition

Let θ be (anti)morphic involution over Σ^* , and let $u,v\in\Sigma^+$ such that $u\perp_{\theta} v$, |u|=|v|, and there exists $a\in\Sigma$ such that $|u|_{a,\theta(a)}=|v|_{a,\theta(a)}$. Then $(u\sqcup v)\perp_{\theta}\{u,v\}$.

BW Operation - Perfect Shuffle

Given $u, v \in \Sigma^+$, their perfect shuffle $u \coprod_p v$ is defined as the set of all words of the form $a_1b_1 \cdots a_kb_k$ such that $u = a_1 \cdots a_k, v = b_1 \cdots b_k$ where $a_i, b_i \in \Sigma^*$ for $1 \le i \le k$.

BW Operation - Perfect Shuffle

Given $u,v\in \Sigma^+$, their perfect shuffle $u\sqcup_p v$ is defined as the set of all words of the form $a_1b_1\cdots a_kb_k$ such that $u=a_1\cdots a_k, v=b_1\cdots b_k$ where $a_i,b_i\in \Sigma^*$ for $1\leq i\leq k$.

A word $w \in \Sigma^+$ is said to be a θ -palindrome if $w = \theta(w)$ for antimorphic involution θ .

BW Operation - Perfect Shuffle

Given $u, v \in \Sigma^+$, their perfect shuffle $u \coprod_p v$ is defined as the set of all words of the form $a_1b_1 \cdots a_kb_k$ such that $u = a_1 \cdots a_k, v = b_1 \cdots b_k$ where $a_i, b_i \in \Sigma^*$ for $1 \le i \le k$.

A word $w \in \Sigma^+$ is said to be a θ -palindrome if $w = \theta(w)$ for antimorphic involution θ .

Proposition

Let θ be an antimorphic involution over Σ^* , and let $u,v\in\Sigma^+$ be two equi-length θ -palindromes. If $u\perp_{\theta} v$, then $u\sqcup_{p} v$ cannot be a θ palindrome.

$$u\perp_{\theta} v \xrightarrow{?} \theta(u)\perp_{\theta} \theta(v)$$

$$u \perp_{\theta} v \xrightarrow{?} \theta(u) \perp_{\theta} \theta(v)$$

Holds for morphic involution

Doesn't hold for antimorphic involution

Counter example: $u = x\theta(x)x$, $v = \theta(x)x$. Then $u \perp_{\theta} v$; but $\theta(u) \not\perp_{\theta} \theta(v)$

$$u \perp_{\theta} v \xrightarrow{?} \theta(u) \perp_{\theta} \theta(v)$$

Holds for morphic involution

Doesn't hold for antimorphic involution

Counter example: $u = x\theta(x)x$, $v = \theta(x)x$. Then $u \perp_{\theta} v$; but

$$\theta(u) \not\perp_{\theta} \theta(v)$$

$$(u,v)_{\theta}=x\stackrel{?}{\rightarrow}(\theta(u),\theta(v))_{\theta}=\theta(x)$$

$$u \perp_{\theta} v \xrightarrow{?} \theta(u) \perp_{\theta} \theta(v)$$

Holds for morphic involution

Doesn't hold for antimorphic involution

Counter example: $u = x\theta(x)x$, $v = \theta(x)x$. Then $u \perp_{\theta} v$; but $\theta(u) \not\perp_{\theta} \theta(v)$

$$(u,v)_{\theta}=x\stackrel{?}{\rightarrow}(\theta(u),\theta(v))_{\theta}=\theta(x)$$

Holds for morphic involution

Doesn't hold for antimorphic involution

Counter example: $u = x\theta(x)$, v = x Then $(u, v)_{\theta} = x$; but $\theta(u) \perp_{\theta} \theta(v)$.

Future Work

- ullet Relative heta-primitivity in set pairwise relatively heta-primitive
- Notion of (strong) relative θ -primitivity
- Studying other BW operations

Proposition (Gawrychowski et al.)

Let $\theta: \Sigma^* \to \Sigma^*$ be an (anti)morphism and $w \in \Sigma^*$ be a given word with |w| = n.

- One can identify in time $\mathcal{O}(n^{3.5})$ the triples (i,j,k) with $w[i..j] \in \{t, \theta(t)\}^k$ for a proper factor of t of w[i..j].
- ② One can identify in time $\mathcal{O}(n^2k)$ the pairs (i,j) such that $w[i..j] \in \{t, \theta(t)\}^k$ for a proper factor t of w[i..j], when k is also given as input.

For a non-erasing θ we solve (1) in $\Theta(n^3)$ time and (2) in $\Theta(n^2)$ time. For a literal θ we solve (1) in $\Theta(n^2 \lg n)$ time and (2) in $\Theta(n^2)$ time.