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Introduction

Motivation
Pattern matching and text compression algorithms: Detection
of repetitions in a string
Tandem repeats: Biological and medical significance
Information equivalence between DNA strands
Relatively prime numbers
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Structure of DeoxyriboNucleic Acid
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Notations

Σ :- Alphabet
λ :- Empty word
A mapping θ : Σ∗ → Σ∗ is said to be a morphism if
θ(uv) = θ(u)θ(v), an antimorphism if θ(uv) = θ(v)θ(u), and
an involution if θ(θ(u)) = u for all u, v ∈ Σ∗.
|u|a:- Number of occurrences of a ∈ Σ in u ∈ Σ+

|u|a,θ(a) = |u|a + |u|θ(a)
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Primitive Words
A word u ∈ Σ+ is said to be primitive if u = xm for x ∈ Σ+

implies m = 1 and u = x .
λ(u): The primitive root of u

θ-Primitive Words (Czeizler et al.)
A θ-power of u is a word of the form u1u2 · · · un for some n ≥ 1,
where u1 = u and ui ∈ {u, θ(u)} for 2 ≤ i ≤ n.
A word is said to be θ-primitive if it’s not a θ-power of another
word.
ρθ(u): θ-primitive root of u
Qθ: Set of all θ-primitive words

Example
Let Σ = {A,C ,G ,T} and θ be an antimorphic involution such
that θ(A) = T , θ(G) = C and vice versa. Then u1 = ATT is not
θ-primitive, however u2 = ACTG is a θ-primitive word.

Manasi S. Kulkarni Workshop on Words and Complexity



Primitive Words
A word u ∈ Σ+ is said to be primitive if u = xm for x ∈ Σ+

implies m = 1 and u = x .
λ(u): The primitive root of u

θ-Primitive Words (Czeizler et al.)
A θ-power of u is a word of the form u1u2 · · · un for some n ≥ 1,
where u1 = u and ui ∈ {u, θ(u)} for 2 ≤ i ≤ n.
A word is said to be θ-primitive if it’s not a θ-power of another
word.
ρθ(u): θ-primitive root of u
Qθ: Set of all θ-primitive words

Example
Let Σ = {A,C ,G ,T} and θ be an antimorphic involution such
that θ(A) = T , θ(G) = C and vice versa. Then u1 = ATT is not
θ-primitive, however u2 = ACTG is a θ-primitive word.

Manasi S. Kulkarni Workshop on Words and Complexity



Primitive Words
A word u ∈ Σ+ is said to be primitive if u = xm for x ∈ Σ+

implies m = 1 and u = x .
λ(u): The primitive root of u

θ-Primitive Words (Czeizler et al.)
A θ-power of u is a word of the form u1u2 · · · un for some n ≥ 1,
where u1 = u and ui ∈ {u, θ(u)} for 2 ≤ i ≤ n.
A word is said to be θ-primitive if it’s not a θ-power of another
word.
ρθ(u): θ-primitive root of u
Qθ: Set of all θ-primitive words

Example
Let Σ = {A,C ,G ,T} and θ be an antimorphic involution such
that θ(A) = T , θ(G) = C and vice versa. Then u1 = ATT is not
θ-primitive, however u2 = ACTG is a θ-primitive word.

Manasi S. Kulkarni Workshop on Words and Complexity



Relative θ-Primitivity

Let u, v ∈ Σ∗ and let θ be an (anti)morphic involution on Σ∗.
Then (u, v)θ is defined as:

(u, v)θ =
{

x if ρθ(u) = ρθ(v) = x , x ∈ Σ+

λ otherwise

If (u, v)θ = λ, then u and v are said to be relatively θ-primitive
words, denoted by u ⊥θ v .
For x ∈ Σ+, if ρθ(u) = ρθ(v) = x , then u and v are not relatively
θ-primitive, denoted by u 6⊥θ v .
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Example

Let Σ = {a, b, c} and θ be an antimorphic involution such that
θ(a) = b and vice versa, and θ(c) = c. Let u = abccababc,
v1 = abcc, v2 = abcabc. Then
(u, v1)θ = (abccababc, abcc)θ = λ, i.e., u ⊥θ v1.
(u, v2)θ = (abccababc, abcabc)θ = abc, since,
ρθ(u) = ρθ(v2) = abc, i.e., u 6⊥θ v2.
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Equivalence Relation Properties

Let θ be an (anti)morphic involution over Σ∗.

The relation ⊥θ is symmetric on Σ∗ and transitive on Qθ. However
the relation ⊥θ is not reflexive on Σ∗.

The relation 6⊥θ is an equivalence relation on Σ+.
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Associativity and Commutativity

Associativity
For (anti)morphic involution θ over Σ∗, and u, v ,w ∈ Σ+,
((u, v)θ,w)θ = (u, (v ,w)θ)θ

For u, v ∈ Σ+, u is said to θ-commute with v if uv = θ(v)u.

Commutativity
Let θ be a morphic involution over Σ∗ and u, v ,w ∈ Σ+ be such
that vw = θ(w)v . Then,

1 u ⊥θ {v , θ(v)} implies u ⊥θ w
2 u ⊥θ {w , θ(w)} implies u ⊥θ v

Does not hold for an antimorphic involution!
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Words with Common θ-Primitive Root

For words u and v , uv = vu if and only if u and v share the
common primitive root

Proposition
Let θ be a morphic involution over Σ∗ and let u, v ∈ Σ+. If for
some x ∈ Σ+ we have that (uv , vu)θ = x then (u, v)θ = x , and
conversely.
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Decidability

Theorem
Let θ be (anti)morphic involution over Σ∗ and u, v ∈ Σ+ be two
words with u 6= v . It is decidable, in Θ(n2lg n) time, whether
u ⊥θ v , where n = max{|u|, |v |}.
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Language Properties

Lθ,λ(x) = {w ∈ Σ∗|w ⊥θ x}

Lθ(x) = {w ∈ Σ∗|w 6⊥θ x}

Theorem
For a given (anti)morphic involution θ and x ∈ Σ+, the languages
Lθ(x) and Lθ,λ(x) are regular.
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Binary Word (BW) Operation - θ-catenation

For (anti)morphic involution θ on Σ∗ and two words u, v ∈ Σ∗, the
binary word operation of θ-catenation is defined as

u � v = {uv , uθ(v)}

Proposition
Let θ be (anti)morphic involution over Σ∗ and u, v ∈ Σ+ be such
that u ⊥θ {v , θ(v)}. Then for all x ∈ u � v , we have that x ⊥θ u.

Proposition
Let θ be (anti)morphic involution over Σ∗ and u, v ∈ Σ+ be such
that u ⊥θ v . Then for all x ∈ u � v , we have that x ⊥θ v .
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BW Operation - Shuffle

Given u, v ∈ Σ+, their shuffle u� v is defined as the set of all
words of the form u1v1 · · · ukvk such that
u = u1 · · · uk , v = v1 · · · vk where ui , vi ∈ Σ∗ for 1 ≤ i ≤ k.

Proposition
Let θ be (anti)morphic involution over Σ∗, and let u, v ∈ Σ+ such
that u ⊥θ v , |u| = |v |, and there exists a ∈ Σ such that
|u|a,θ(a) = |v |a,θ(a). Then (u� v) ⊥θ {u, v}.
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BW Operation - Perfect Shuffle

Given u, v ∈ Σ+, their perfect shuffle u�p v is defined as the set
of all words of the form a1b1 · · · akbk such that
u = a1 · · · ak , v = b1 · · · bk where ai , bi ∈ Σ∗ for 1 ≤ i ≤ k.

A word w ∈ Σ+ is said to be a θ-palindrome if w = θ(w) for
antimorphic involution θ.

Proposition
Let θ be an antimorphic involution over Σ∗, and let u, v ∈ Σ+ be
two equi-length θ-palindromes. If u ⊥θ v , then u�p v cannot be a
θ palindrome.
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Observation

u ⊥θ v ?−→ θ(u) ⊥θ θ(v)

Holds for morphic involution
Doesn’t hold for antimorphic involution
Counter example: u = xθ(x)x , v = θ(x)x . Then u ⊥θ v ; but
θ(u) 6⊥θ θ(v)

(u, v)θ = x ?−→ (θ(u), θ(v))θ = θ(x)

Holds for morphic involution
Doesn’t hold for antimorphic involution
Counter example: u = xθ(x), v = x Then (u, v)θ = x ; but
θ(u) ⊥θ θ(v).
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Future Work

Relative θ-primitivity in set - pairwise relatively θ-primitive
Notion of (strong) relative θ-primitivity
Studying other BW operations
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Proposition (Gawrychowski et al.)

Let θ : Σ∗ → Σ∗ be an (anti)morphism and w ∈ Σ∗ be a given
word with |w | = n.

1 One can identify in time O(n3.5) the triples (i , j , k) with
w [i ..j] ∈ {t, θ(t)}k for a proper factor of t of w [i ..j].

2 One can identify in time O(n2k) the pairs (i , j) such that
w [i ..j] ∈ {t, θ(t)}k for a proper factor t of w [i ..j], when k is
also given as input.

For a non-erasing θ we solve (1) in Θ(n3) time and (2) in Θ(n2)
time. For a literal θ we solve (1) in Θ(n2lg n) time and (2) in
Θ(n2) time.

Manasi S. Kulkarni Workshop on Words and Complexity


