LOCAL PATTERNS

k-Locality and the Matching Problem

Joel Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka {ida,fpa,flm,dn}@informatik.uni-kiel.de

February 20, 2018

Kiel University Dependable Systems Group

MOTIVATION

CONFERENCE

 $\bigcirc\,$ 2 Players alternately mark **all** occurrences of a letter

- $\bigcirc\,$ 2 Players alternately mark **all** occurrences of a letter
- \bigcirc each new block \Rightarrow -1 point

- 2 Players alternately mark **all** occurrences of a letter
- \bigcirc each new block \Rightarrow -1 point
- combining two blocks \Rightarrow +1 point

- 2 Players alternately mark **all** occurrences of a letter
- \bigcirc each new block \Rightarrow -1 point
- \bigcirc combining two blocks \Rightarrow +1 point

- O 2 Players alternately mark all occurrences of a letter
- each new block \Rightarrow -1 point
- \bigcirc combining two blocks \Rightarrow +1 point

- 2 Players alternately mark **all** occurrences of a letter
- \bigcirc each new block \Rightarrow -1 point
- \bigcirc combining two blocks \Rightarrow +1 point

- 2 Players alternately mark **all** occurrences of a letter
- each new block \Rightarrow -1 point
- \bigcirc combining two blocks \Rightarrow +1 point

- 2 Players alternately mark **all** occurrences of a letter
- each new block \Rightarrow -1 point
- \bigcirc combining two blocks \Rightarrow +1 point

- 2 Players alternately mark **all** occurrences of a letter
- \bigcirc each new block \Rightarrow -1 point
- \bigcirc combining two blocks \Rightarrow +1 point

CONFERENCE

- 2 Players alternately mark all occurrences of a letter
- \bigcirc each new block \Rightarrow -1 point
- combining two blocks \Rightarrow +1 point

What is the minimal number of blocks needed?

k-LOCALITY

Definition (Block, Marking, Marking Sequence)

○ **block**: continuous part in the word

Definition (Block, Marking, Marking Sequence)

○ **block**: continuous part in the word

EXAMPLE

aabccdaabbeee

Definition (Block, Marking, Marking Sequence)

 \bigcirc **block**: continuous part in the word

EXAMPLE

aa b cc d aa bb eee

Definition (Block, Marking, Marking Sequence)

 \bigcirc **block**: continuous part in the word

EXAMPLE

 $\mathsf{aabccdaabbeee} \! \to [\mathsf{a}]^{\mathfrak{b}}[\mathsf{b}]^{\mathfrak{b}}[\mathsf{c}]^{\mathfrak{b}}[\mathsf{d}]^{\mathfrak{b}}[\mathsf{a}]^{\mathfrak{b}}[\mathsf{b}]^{\mathfrak{b}}[\mathsf{e}]^{\mathfrak{b}}$

Definition (Block, Marking, Marking Sequence)

- **block**: continuous part in the word
- \bigcirc **marking**: mapping from letter a to copy \overline{a}

Definition (Block, Marking, Marking Sequence)

- **block**: continuous part in the word
- \bigcirc **marking**: mapping from letter a to copy \overline{a}
- O marking sequence: enumeration of letters

Definition (Block, Marking, Marking Sequence)

- O block: continuous part in the word
- \bigcirc **marking**: mapping from letter *a* to copy \overline{a}
- marking sequence: enumeration of letters

EXAMPLE

 $banana + (a,b,n) \rightarrow b\overline{a}n\overline{a}n\overline{a} (3 \ blocks)$

Definition (Block, Marking, Marking Sequence)

- **block**: continuous part in the word
- \bigcirc **marking**: mapping from letter a to copy \overline{a}
- marking sequence: enumeration of letters

EXAMPLE

banana
$$+ (a, b, n) \rightarrow b\overline{a}n\overline{a}n\overline{a} (3 \text{ blocks})$$

→ banana (3 blocks)

Definition (Block, Marking, Marking Sequence)

- **block**: continuous part in the word
- \bigcirc **marking**: mapping from letter *a* to copy \overline{a}
- marking sequence: enumeration of letters

EXAMPLE

$$banana + (a,b,n) \rightarrow b\overline{a}n\overline{a}n\overline{a} \ (3 \ blocks)$$

Definition (*k*-local)

○ word *k***-local**: there exists marking sequence, such that at any time no more than *k* blocks are marked

Definition (k-local)

○ word *k***-local**: there exists marking sequence, such that at any time no more than *k* blocks are marked

EXAMPLE

 $banana + (a,b/n,n/b) \rightarrow b\overline{a}n\overline{a}n\overline{a} \rightarrow \overline{bana}n\overline{a} \rightarrow \overline{banana} \quad 3\text{-local}$

Definition (k-local)

 \bigcirc word k-local: there exists marking sequence, such that at any time no more than k blocks are marked

EXAMPLE

banana +
$$(a, b/n, n/b) \rightarrow b\overline{a}n\overline{a}n\overline{a} \rightarrow \overline{b}an\overline{a}n\overline{a} \rightarrow \overline{b}anana$$
 3-local banana + $(b, a/n, n/a) \rightarrow \overline{b}anana \rightarrow \overline{b}an\overline{a}n\overline{a} \rightarrow \overline{b}anana$ 3-local

Definition (k-local)

 \bigcirc word k-local: there exists marking sequence, such that at any time no more than k blocks are marked

EXAMPLE

banana + $(a, b/n, n/b) \rightarrow b\overline{a}n\overline{a}n\overline{a} \rightarrow \overline{b}an\overline{a}n\overline{a} \rightarrow \overline{b}anana$ 3-local banana + $(b, a/n, n/a) \rightarrow \overline{b}anana \rightarrow \overline{b}an\overline{a}n\overline{a} \rightarrow \overline{b}anana$ 3-local banana + $(n, b, a) \rightarrow ba\overline{n}a\overline{n}a \rightarrow \overline{b}a\overline{n}a\overline{n}a \rightarrow \overline{b}anana$ 3-local

Definition (*k*-local)

○ word *k***-local**: there exists marking sequence, such that at any time no more than *k* blocks are marked

EXAMPLE

$banana + (a, b/n, n/b) \rightarrow b\overline{a}n\overline{a}n\overline{a} \rightarrow \overline{banana} \rightarrow \overline{banana}$	3-local
$banana + (b, a/n, n/a) \rightarrow \overline{banana} \rightarrow \overline{banana} \rightarrow \overline{banana}$	3-local
$banana + (n,b,a) \rightarrow ba\overline{n}a\overline{n}a \rightarrow \overline{b}a\overline{n}a\overline{n}a \rightarrow \overline{b}anana$	3-local
$banana + (n, a, b) \rightarrow ba\overline{n}a\overline{n}a \rightarrow b\overline{anana} \rightarrow \overline{banana}$	2-local

Definition (k-local)

 \bigcirc word k-local: there exists marking sequence, such that at any time no more than k blocks are marked

Problem (Decision Problem)

Given a word w and $k \in \mathbb{N}$, decide whether w is k-local.

Definition (*k*-local)

 \circ word k-local: there exists marking sequence, such that at any time no more than k blocks are marked

Problem (Decision Problem)

Given a word w and $k \in \mathbb{N}$, decide whether w is k-local.

Problem (Minimisation Problem)

Find the minimal $k \in \mathbb{N}$ for a given $w \in \Sigma^*$, such that w is k-local.

Local Patterns

○ **minimisation** is 3-local

- **minimisation** is 3-local
- **floccinaucinihilipilification** is 6-local

- **minimisation** is 3-local
- **floccinaucinihilipilification** is 6-local
- pneumonoultramicroscopicsilicovolcanoconiosis is 8-local

- minimisation is 3-local
- **floccinaucinihilipilification** is 6-local
- pneumonoultramicroscopicsilicovolcanoconiosis is 8-local
- Lentokonesuihkuturbiinimoottoriapumekaanikkoaliupseerioppilas is 10-local

- **minimisation** is 3-local
- Of **floccinaucinihilipilification** is 6-local
- pneumonoultramicroscopicsilicovolcanoconiosis is 8-local
- Lentokonesuihkuturbiinimoottoriapumekaanikkoaliupseerioppilas is 10-local

Does it have to be long?

Basic Observation

 \bigcirc worst case = highest minimal k: $(ab)^n$ is strictly $\frac{|w|}{2}$ -local

Basic Observation

- \bigcirc worst case = highest minimal k: $(ab)^n$ is strictly $\frac{|w|}{2}$ -local
- it doesn't have to be artifical or long

Onko teidän jo **tutustuttu** reittin?

Basic Observation

- \bigcirc worst case = highest minimal k: $(ab)^n$ is strictly $\frac{|w|}{2}$ -local
- it doesn't have to be artifical

Onko teidät jo <u>tutustuttu</u> reittiin? 4-local

Basic Observation

- \bigcirc worst case = highest minimal k: $(ab)^n$ is strictly $\frac{|w|}{2}$ -local
- it doesn't have to be artifical

Onko teidät jo **tutustuttu** reittiin?

4-local

 \bigcirc k-local \Rightarrow (k+i)-local for $i \in \mathbb{N}$

Basic Observation

- \bigcirc worst case = highest minimal k: $(ab)^n$ is strictly $\frac{|w|}{2}$ -local
- it doesn't have to be artifical

Onko teidät jo tutustuttu reittiin?

- \bigcirc k-local \Rightarrow (k + i)-local for $i \in \mathbb{N}$
- factor of *k*-local word is *k*-local

Theorem

The decision problem, whether a word is k-local is NPC in general.

Theorem

The decision problem, whether a word is k-local is NPC in general.

 \bigcirc Reduction from Clique

Theorem 1

The decision problem, whether a word is k-local is NPC in general.

Theorem

There exists an algorithm deciding k-locality in time $O(k|w|^{2k})$

Theorem

The decision problem, whether a word is k-local is NPC in general.

Theorem

There exists an algorithm deciding k-locality in time $\mathfrak{O}(k|w|^{2k})$

 \bigcirc dynamic programming, memoize marked factors

Theorem

The decision problem, whether a word is k-local is NPC in general.

Theorem

There exists an algorithm deciding k-locality in time $\mathfrak{G}(k|w|^{2k})$

- O dynamic programming, memoize marked factors
- \bigcirc algorithm is constructive (\Rightarrow marking sequence)

Local Patterns

Intuition for 1-local words:

aaa

Intuition for 1-local words:

aaa

aaaa

Intuition for 1-local words:

aaa

Intuition for 1-local words:

bbaaab

Intuition for 1-local words:

bbaaabcccc

Intuition for 1-local words:

dddbbaaabccccdd

Intuition for 1-local words:

...dddbbaaabccccdd...

Intuition for 1-local words:

...dddbbaaabccccdd...

Let's rewrite this:

$$\dots [d]^{b}[b]^{b}[a]^{b}[b]^{b}[c]^{b}[d]^{b}\dots$$

Intuition for 1-local words:

 \dots dddbbaaabccccdd \dots

Let's rewrite this:

$$\dots [d]^{\mathfrak{b}} \underbrace{[c]^{\mathfrak{b}}}_{\text{empty}} [b]^{\mathfrak{b}} [a]^{\mathfrak{b}} [b]^{\mathfrak{b}} [c]^{\mathfrak{b}} [d]^{\mathfrak{b}} \dots$$

Intuition for 1-local words:

...dddbbaaabcccdd...

Let's rewrite this:

$$\dots [d]^{\mathfrak{b}} \underbrace{[c]^{\mathfrak{b}}}_{\text{empty}} [b]^{\mathfrak{b}} [a]^{\mathfrak{b}} [b]^{\mathfrak{b}} [c]^{\mathfrak{b}} [d]^{\mathfrak{b}} \dots$$

 \Rightarrow 1-local have palindromic structure

Decision Problem for k = 1

Theorem

Given a word $w \in \Sigma^m$ we can decide in time $\mathfrak{O}(m)$ whether w is 1-local.

Decision Problem for k = 1

Theorem

Given a word $w \in \Sigma^m$ we can decide in time $\mathfrak{O}(m)$ whether w is 1-local.

 \bigcirc algorithm is again constructive

$$[a]^{\mathfrak{b}}\dots[a]^{\mathfrak{b}}$$

$$[b]^{b}[a]^{b}[b]^{b}\dots[b]^{b}[a]^{b}[b]^{b}$$

$$[c]^{b}[b]^{b}[a]^{b}[b]^{b}[c]^{b}[b]^{b}[a]^{b}[b]^{b}[c]^{b}\dots [c]^{b}$$

Intuition for 2-local words:

$$[c]^{b}[b]^{b}[a]^{b}[b]^{b}[c]^{b}[b]^{b}[a]^{b}[b]^{b}[c]^{b}\dots [c]^{b}$$

 \Rightarrow structure is more complicated

PATTERN MATCHING

Definition

 \bigcirc $\Sigma = \{a, b, \dots\}$ finite terminal alphabet

Definition

- \bigcirc $\Sigma = \{a, b, \dots\}$ finite terminal alphabet
- \bigcirc $X = \{x_1, x_2, \dots\}$ infinite set of variables

Definition

- $\bigcirc \Sigma = \{a, b, \dots\}$ finite terminal alphabet
- $\bigcirc X = \{x_1, x_2, \dots\}$ infinite set of variables
- **pattern:** word over $(X \cup \Sigma)$

Definition

- $\bigcirc \Sigma = \{a, b, \dots\}$ finite terminal alphabet
- $\bigcirc X = \{x_1, x_2, \dots\}$ infinite set of variables
- **pattern:** word over $(X \cup \Sigma)$

EXAMPLE

 $x_4 loc x_2 nau x_2 n x_3 h x_1 p x_1 x_4 x_3 cat x_3 on$

Definition

○ **substitution:** $h: (X \cup \Sigma)^* \to \Sigma^*$ with h(a) = a for all $a \in \Sigma$

EXAMPLE

 $x_4 loc x_2 nau x_2 n x_3 h x_1 p x_1 x_4 x_3 cat x_3 on$

Definition

○ **substitution:** $h: (X \cup \Sigma)^* \to \Sigma^*$ with h(a) = a for all $a \in \Sigma$

EXAMPLE

$$h(x_1) = ili$$

 $x_4 loc x_2 nau x_2 n x_3 h$ ili p ili $x_4 x_3 cat x_3 on$

Definition

○ **substitution:** $h: (X \cup \Sigma)^* \to \Sigma^*$ with h(a) = a for all $a \in \Sigma$

EXAMPLE

$$h(x_1) = ili, h(x_2) = ci$$

x4 loc ci nau ci n x3 h ili p ili x4 x3 cat x3 on

Definition

○ **substitution:** $h: (X \cup \Sigma)^* \to \Sigma^*$ with h(a) = a for all $a \in \Sigma$

EXAMPLE

$$h(x_1) = ili, h(x_2) = ci, h(x_3) = i$$

x4 loc ci nau ci n i h ili p ili x4 i cat i on

Definition

○ **substitution:** $h: (X \cup \Sigma)^* \to \Sigma^*$ with h(a) = a for all $a \in \Sigma$

EXAMPLE

$$h(x_1) = ili, h(x_2) = ci, h(x_3) = i, h(x_4) = f$$

floc ci nau ci n i h ili p ili fi cat i on

Matching Problem

Problem

Decide for a word $w \in \Sigma^*$ and a pattern $\alpha \in (X \cup \Sigma)^+$ whether there exists a substitution h with $h(\alpha) = w$.

Matching Problem

Problem

Decide for a word $w \in \Sigma^*$ and a pattern $\alpha \in (X \cup \Sigma)^+$ whether there exists a substitution h with $h(\alpha) = w$.

Theorem (Angluin)

Match is NP-complete.

Bad news

Bad news

 still NPC, if every variable only constant number of times (Fernau, Schmid 2013)

Bad news

- still NPC, if every variable only constant number of times (Fernau, Schmid 2013)
- Onatural parametrized variants w[1]-hard (Fernau et al. 2015)

Bad news

- still NPC, if every variable only constant number of times (Fernau, Schmid 2013)
- natural parametrized variants w[1]-hard (Fernau et al. 2015)

Good news (polynomial time)

non-cross

Bad news

- still NPC, if every variable only constant number of times (Fernau, Schmid 2013)
- natural parametrized variants w[1]-hard (Fernau et al. 2015)

- non-cross
- bounded scope coincidence degree

Bad news

- still NPC, if every variable only constant number of times (Fernau, Schmid 2013)
- natural parametrized variants w[1]-hard (Fernau et al. 2015)

- non-cross
- bounded scope coincidence degree
- \bigcirc mildly entwined patterns

Bad news

- still NPC, if every variable only constant number of times (Fernau, Schmid 2013)
- onatural parametrized variants w[1]-hard (Fernau et al. 2015)

- non-cross
- bounded scope coincidence degree
- mildly entwined patterns
- bounded tree-width (most general (Reidenbach, Schmid 2014))

Bad news

- still NPC, if every variable only constant number of times (Fernau, Schmid 2013)
 - natural parametrized variants w[1]-hard (Fernau et al. 2015)

Good news (polynomial time)

- non-cross
 - bounded scope coincidence degree
- mildly entwined patterns
- bounded tree-width (most general (Reidenbach, Schmid 2014))

On which side is k-locality?

k-LOCAL PATTERNS

Definition

skeleton of a word: word without letters

Definition

skeleton of a word: word without letters

EXAMPLE

 $x_4 loc x_2 nau x_2 n x_3 h x_1 p x_1 x_4 x_3 cat x_3 on \rightarrow x_4 x_2 x_2 x_3 x_1 x_1 x_4 x_3 x_3$

Definition

- **skeleton of a word:** word without letters
- **pattern** *k***-local**: skeleton is *k*-local

Definition

- **skeleton of a word:** word without letters
- **pattern** *k***-local**: skeleton is *k*-local

EXAMPLE

$$x_4 x_2 x_2 x_3 x_1 x_1 x_4 x_3 x_3 + (x_1, x_2, x_4, x_3) \Rightarrow \text{2-local}$$

Overview

incomparable to bounded

- \odot scope coincidence degree
- number of variables

Local Patterns recurrences of variables

Matching k-local Patterns

Theorem

There exists an algorithm that decides for given $k \in \mathbb{N}$, k-local pattern α and word w whether w matches α in time $\mathfrak{G}(k|\alpha||w|^{\max\{3k-1,2k+1\}})$.

Matching k-local Patterns

Theorem

There exists an algorithm that decides for given $k \in \mathbb{N}$, k-local pattern α and word w whether w matches α in time $\mathbb{O}(k|\alpha||w|^{\max\{3k-1,2k+1\}})$.

○ k-locality \Rightarrow bounded treewidth \Rightarrow 4k + 4 (Reidenbach, Schmid 2014)

Matching k-local Patterns

Theorem

There exists an algorithm that decides for given $k \in \mathbb{N}$, k-local pattern α and word w whether w matches α in time $\mathbb{O}(k|\alpha||w|^{\max\{3k-1,2k+1\}})$.

 \Rightarrow k-locality \Rightarrow bounded treewidth \Rightarrow 4k + 4 (Reidenbach, Schmid 2014)

Theorem (k = 1)

There exists an algorithm that decides for given 1-local pattern α and a word w whether w matches α in time $\mathfrak{O}(|\alpha||w|^2\log(|w|))$

Local Patterns

Cont.

 \bigcirc k = 1: combinatorics on words + data structures

Cont.

- \bigcirc k = 1: combinatorics on words + data structures
- \odot general: compute marking sequence for α , match each variable to possible parts of w which are adjacent (local) to already marked parts

Cont.

- \bigcirc k = 1: combinatorics on words + data structures
- \bigcirc general: compute marking sequence for α , match each variable to possible parts of w which are adjacent (local) to already marked parts
- $\bigcirc \Rightarrow (k \text{ small} \Rightarrow \text{matching efficient})$

Excursus: Strongly Nested Patterns

Definition (Strongly Nestedness)

- $\alpha \in X^*$ strongly nested: $\alpha = \alpha_1[x]^b \alpha_2[x]^b \alpha_3$
 - $\alpha_1, \alpha_2, \alpha_3 \in (X \setminus \{x\})^*$
 - $o Var(\alpha_1\alpha_3) \cap Var(\alpha_2) = \emptyset$

Excursus: Strongly Nested Patterns

Definition (Strongly Nestedness)

- $\alpha \in X^*$ strongly nested: $\alpha = \alpha_1[x]^b \alpha_2[x]^b \alpha_3$
 - $\alpha_1, \alpha_2, \alpha_3 \in (X \setminus \{x\})^*$
 - $o Var(\alpha_1\alpha_3) \cap Var(\alpha_2) = \emptyset$

EXAMPLE

 $x_8x_7 x_6 x_1x_2x_1 x_3x_4x_5x_3 x_6 x_8x_9$

Excursus: Strongly Nested Patterns

Definition (Strongly Nestedness)

- $\alpha \in X^*$ strongly nested: $\alpha = \alpha_1[x]^b \alpha_2[x]^b \alpha_3$
 - $\alpha_1, \alpha_2, \alpha_3 \in (X \setminus \{x\})^*$
 - $Var(\alpha_1\alpha_3) \cap Var(\alpha_2) = \emptyset$
- \bigcirc Strongly nested patterns are $\Theta(\log(|\alpha|))$ -local.

Strongly Nested Patterns

Theorem

Deciding whether a pattern is strongly nested is doable in linear time.

Strongly Nested Patterns

Theorem

Deciding whether a pattern is strongly nested is doable in linear time.

Theorem

There exists an algorithm that, given a strongly nested pattern α and a word w decides whether w matches α in time $\mathfrak{G}(|\alpha||w|^3)$

Strongly Nested Patterns

Theorem

Deciding whether a pattern is strongly nested is doable in linear time.

Theorem

There exists an algorithm that, given a strongly nested pattern α and a word w decides whether w matches α in time $\mathfrak{G}(|\alpha||w|^3)$

- \bigcirc improvement from mildly entwined patterns ($\Im(|\alpha||w|^6)$ (Reidenbach, Schmid 2014))
- algorithm uses the *tree-structure* of the patterns

Local Patterns

Questions?

thanks danke kiitos dĕkuji grazie dziękuję merci datorită gracias tak спаси́бо

Questions?

thanks danke kiitos děkuji grazie dziękuję merci datorită gracias tak спаси́бо

all 1-local