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Regularities in Combinatorics

In combinatorics, the notion of regularity is often associated with
repetitions of some equal objects.

For example, a regular polygon is one in which all the sides have the
same length.

We consider a different point of view, in which we look for diversity.
That is, definitions of regularity based on all-distinct objects.

Of course, being all distinct is a priori more common than being all
equal. Still, only a few works have been devoted to enumerating
all-distinct configurations of some combinatorial structure.
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Ramsey Theory

Ramsey theory looks for unavoidable regularity inside large combinatorial
structures.

A basic example could be the pigeonhole principle: if n items are put into
m containers, with n > m, then at least one container must contain
more than one item.

The two most influential results of this type are probably:

1 Ramsey’s theorem for graphs;

2 Van der Waerden’s theorem for coloring of the positive integers.

G. Fici Anti-Powers in Infinite Words



Ramsey Theory

Ramsey theory looks for unavoidable regularity inside large combinatorial
structures.

A basic example could be the pigeonhole principle: if n items are put into
m containers, with n > m, then at least one container must contain
more than one item.

The two most influential results of this type are probably:

1 Ramsey’s theorem for graphs;

2 Van der Waerden’s theorem for coloring of the positive integers.

G. Fici Anti-Powers in Infinite Words



Ramsey Theory

Ramsey theory looks for unavoidable regularity inside large combinatorial
structures.

A basic example could be the pigeonhole principle: if n items are put into
m containers, with n > m, then at least one container must contain
more than one item.

The two most influential results of this type are probably:

1 Ramsey’s theorem for graphs;

2 Van der Waerden’s theorem for coloring of the positive integers.

G. Fici Anti-Powers in Infinite Words



Ramsey’s Theorem for Graphs

Let us consider undirected graphs in which edges are colored either red or
blue.

Ramsey’s theorem (1930) states that for every pair of integers r, b ≥ 2,
there exists an integer N = N(r, b) such that every possible coloring of
the complete graph KN creates a red Kr or a blue Kb.

For example, N(3, 3) = 6. Hence, in every group of six people, one can
always find three of them that are pairwise friends or three of them that
are pairwise strangers.

Note that the smallest N(r, b), called Ramsey numbers, are hard to
compute. For example, nobody knows the exact value of N(5, 5).
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Anti-Ramsey Theory

There also exists the notion of a rainbow (an edge-colored graph in which
no color is repeated) and the corresponding anti-Ramsey theory, see:

P. Erdős, M. Simonovits, V. T. Sós. Anti-Ramsey theorems, infinite and
finite sets (Colloq. Keszthely, 1973; dedicated to P. Erdős on his 60th
birthday). Colloq. Math. Soc. János Bolyai, pages 633–643, 1975.
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Van der Waerden’s Theorem

Van der Waerden’s theorem (1927) states that every finite coloring of the
positive integers contains arbitrarily long monochromatic arithmetic
subsequences.

An r-coloring of the positive integers can be viewed as an infinite word
over r letters (usually denoted by 0, 1, . . . , r − 1).

Note that one can avoid infinite monochromatic arithmetic subsequences,
as shown by the infinite binary word

w = 011000111100000 · · ·
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Van der Waerden’s Theorem

A finite version of Van der Waerden’s theorem is the following: For every
pair of positive integers r, k there exists a positive integer W = W (r, k)
such that if the integers 1, 2, . . . ,W are colored, each with one of r
different colors, then there are at least k integers that form a
monochromatic arithmetic progression. The smallest such W is the van
der Waerden number W (r, k).

As well as Ramsey numbers, van der Waerden numbers are hard to
compute — for example, nobody knows the exact value of W (4, 4).

However, T. Gowers [Geom. Funct. Anal., 2001] proved that

W (r, k) ≤ 22
r2

2k+9
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Unavoidable Regularities

We are interested in combinatorial properties of finite factors of infinite
words.

For example, we want to know if some kind of pattern does/does not
appear inside a given infinite word.

Example

The fixed point starting with 2 of the substitution
0 7→ 1, 1 7→ 20, 2 7→ 210:

h = 21020121012021020120210121 · · ·

does not contain any square, that is, a pattern of the form XX, where X
is any nonempty block of consecutive letters.
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Unavoidable Regularities

Some patterns are avoidable; others are not. Often, this depends on the
size of the alphabet.

Remark

Every infinite word over a 2-letter alphabet must contain a square.

So for example squares are avoidable over a 3-letter alphabet, but they
are unavoidable over a 2-letter alphabet.

As another example, cubes (powers of order 3) are avoidable over a
2-letter alphabet (for example, the Thue-Morse word
t = 0110100110010110100101100110 · · · does not contain any cube).

There is a vaste literature on the avoidability of exact and approximate
repetitions...
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Unavoidable Regularities

Definition

An unavoidable regularity is a property P such that it is not possible to
construct arbitrarily long words not satisfying P .

Only a few unavoidable regularities are known without restrictions on the
size of the alphabet.

Unavoidable regularities are important because finding them in a given
sequence does not allow one to derive that that sequence has special
properties.
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Unavoidable Regularities

For example, if someone observes that in the word of length 76:

CCGCTACGATGTCCTATAACCTCGCAAGGTGCCACGCA·

CCGTCAGCGACAGGTCGATGGCCTTCGCTATGGACTAA

there are 3 T ’s at the same distance, then we are not surprised since we
know that W (4, 3) = 76.

(Therefore, not only the existence of an unavoidable regularity is
important, but also the computation of the “avoidability thresholds” is.)
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Unavoidable Regularities

An example of unavoidable regularity for words is given by the
Zimin patterns: X1, X1X2X1, X1X2X1X3X1X2X1, . . .

Theorem (Zimin, 1984)

All Zimin patterns are unavoidable.

For example, over a k-ary alphabet, every word of length at least 2k + 1
must contain a factor of the form XYX.

E.g., over 3 letters, the word w = 001122 does not contain any factor of
the form XYX, but it cannot be extended by one letter keeping this
property.
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Unavoidable Regularities

Another example of unavoidable regularity is given by the Shirshov’s
theorem.

Recall that a sequence (u1, u2, . . . , un) of nonempty words is an
n-division of the word u = u1u2 · · ·un if for any permutation σ ∈ Sn one
has u > uσ(1)uσ(2) · · ·uσ(n) (in the lexicographic order).

Theorem (Shirshov, 1957)

Given a finite ordered alphabet A, for any integers n, k > 1 there exists
S = S(|A|, n, k) such that every word of length S contains either a factor
that is a k-power or a factor that is n-divided.
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Our Result

We introduce the notion of an anti-power and show that it gives rise to a
new unavoidable regularity.

Definition

An anti-power of order k (or simply a k-anti-power) is a word of the form
x1x2 · · ·xk where the xi have the same length and are all distinct.

Example

The prefix of length 12 of

h = 21020121012021020120210121 · · ·

is a 3-anti-power: 2102 · 0121 · 0120, while the prefix of length 16 is not a
4-anti-power.
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Our Result

We proved the following

Theorem (G. F., A. Restivo, M. Silva, L. Zamboni)

Every infinite word contains powers of any order or anti-powers of any
order.

That is, the presence of consecutive blocks of the same length that are all
equal or all different within any infinite word is an unavoidable regularity.
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Our Result

The proof of the theorem is purely combinatorial, and actually allows us
to state a stronger result:

Theorem

Let w be an infinite word.

AP (w, k) = {m ∈ N | the prefix of w of length km is a k-anti-power}.

Suppose that the lower density d (AP (w, k)) verifies

d (AP (w, k)) <

(
1 +

(
k

2

))−1
=

2

2 + k(k − 1)

for some k ∈ N. Then there exists u with 0 < |u| ≤ (k − 1)
(
k
2

)
such that

ul is a factor of w for every l ≥ 1.
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Some Consequence

Let us give a corollary of our main result.

Definition

An infinite word w is said to be uniformly recurrent if every finite factor
of w occurs syndetically in it (that is, it occurs infinitely often and with
bounded gaps).

Corollary

Let w be a uniformly recurrent aperiodic word. Then anti-powers of any
order occur at every position of w.
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Some Consequence

So for example the Thue-Morse word

t = 0110100110010110100101100110 · · ·

contains anti-powers of any order starting at every position.

We conjectured that the length nt(k) of the shortest prefix of t that is a
k-anti-power grows linearly with k.

Recently, C. Defant [Elect. J. Combin., 2017] proved this conjecture,
together with other interesting results on the combinatorics of
anti-powers in the Thue-Morse word.

What other words w are such that nw(k) grows linearly with k?
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Avoiding Anti-Powers

Periodic words avoid anti-powers, the period length being an upper bound
for the maximal number of distinct consecutive blocks of the same length.

Lemma

Let w be an infinite word avoiding 3-anti-powers. Then w is ultimately
periodic. i.e., w = uvvvv · · · for some blocks u and v.

Proposition

There exist aperiodic words avoiding 4-anti-powers.

An example is the word w = 1 · 03 · 1 · 019 · 1 · 099 · 1 · · · where there is a
1 in every position that is a power of 5, and 0 elsewhere.
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An example is the word w = 1 · 03 · 1 · 019 · 1 · 099 · 1 · · · where there is a
1 in every position that is a power of 5, and 0 elsewhere.
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Avoiding Anti-Powers

w = 1 · 03 · 1 · 019 · 1 · 099 · 1 · · ·

This word avoids 4-anti-powers but is not recurrent (a word is recurrent if
every factor occurs infinitely often).

Adding the hypothesis of recurrence we proved the following

Proposition

There exist recurrent aperiodic words avoiding 6-anti-powers.

Let w0 = 0 and wn = wn−113|wn−1|wn−1 for every n > 0. The infinite
word w obtained as the limit of the sequence of words (wn)n≥1 is
recurrent and avoids 6-anti-powers.

Do aperiodic recurrent words exist that avoid anti-powers of order k for
k = 4, 5?
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Ramsey-like Version

Another consequence of our main result is the following finite version of
our result.

Theorem

For all integers l > 1 and k > 1 there exists an integer N = N(l, k) such
that every word of length N contains an l-power or a k-anti-power.
Furthermore, for k > 2, one has k2 − 1 ≤ N(k, k) ≤ k3

(
k
2

)
.

Thanks to Jeff Shallit, the sequence N(k, k) = 1, 2, 9, 24, 55, · · · is now
in the Online Encyclopedia of Integer Sequences (sequence A274543).
To do: compute more terms.

A future direction of investigation consists in improving the bounds on
these numbers.
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OEIS

Other interesting sequences are present in the OEIS:

A274449: Number of binary words of length n having the minimum
possible number of different anti-power periods:
2, 2, 8, 4, 32, 2, 128, 16, 176, 32, 2048, 4, 8192, 128, ...

A274450: Largest number of anti-power periods possible for a binary
word of length n:
1, 2, 1, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 3, 3, 1, 4, 1, ...

A274451: Number of possible sets of anti-power periods for binary words
of length n:
1, 2, 1, 2, 1, 4, 1, 3, 2, 2, 1, 6, 1, 2, 4, 3, 1, 5, 1, ...

A274457: Shortest possible anti-power period of a binary word of length
n:
1, 1, 3, 2, 5, 2, 7, 2, 3, 5, 11, 3, 13, 7, 3, 4, 17, ...

A275061: Number of binary words of length n avoiding 4-anti-powers:
1, 2, 4, 8, 16, 32, 64, 128, 232, 432, 808, 1512, ...
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Abelian Anti-Powers

A natural generalization of the notion of an anti-power is that of an
abelian anti-power.

Recall that the Parikh (or composition) vector of a finite word w is the
vector that counts the multiplicities of the letters of the alphabet in w,
e.g. P (abaac) = (3, 1, 1).

Definition

An abelian anti-power of order k (or simply an abelian k-anti-power) is a
word of the form x1x2 · · ·xk where the xi have the same length and
different Parikh vectors.

Of course an abelian k-anti-power is a k-anti-power but the converse is
not always true.

G. Fici Anti-Powers in Infinite Words



Abelian Anti-Powers

A natural generalization of the notion of an anti-power is that of an
abelian anti-power.

Recall that the Parikh (or composition) vector of a finite word w is the
vector that counts the multiplicities of the letters of the alphabet in w,
e.g. P (abaac) = (3, 1, 1).

Definition

An abelian anti-power of order k (or simply an abelian k-anti-power) is a
word of the form x1x2 · · ·xk where the xi have the same length and
different Parikh vectors.

Of course an abelian k-anti-power is a k-anti-power but the converse is
not always true.

G. Fici Anti-Powers in Infinite Words



Abelian Anti-Powers

A natural generalization of the notion of an anti-power is that of an
abelian anti-power.

Recall that the Parikh (or composition) vector of a finite word w is the
vector that counts the multiplicities of the letters of the alphabet in w,
e.g. P (abaac) = (3, 1, 1).

Definition

An abelian anti-power of order k (or simply an abelian k-anti-power) is a
word of the form x1x2 · · ·xk where the xi have the same length and
different Parikh vectors.

Of course an abelian k-anti-power is a k-anti-power but the converse is
not always true.

G. Fici Anti-Powers in Infinite Words



Abelian Anti-Powers

A natural generalization of the notion of an anti-power is that of an
abelian anti-power.

Recall that the Parikh (or composition) vector of a finite word w is the
vector that counts the multiplicities of the letters of the alphabet in w,
e.g. P (abaac) = (3, 1, 1).

Definition

An abelian anti-power of order k (or simply an abelian k-anti-power) is a
word of the form x1x2 · · ·xk where the xi have the same length and
different Parikh vectors.

Of course an abelian k-anti-power is a k-anti-power but the converse is
not always true.

G. Fici Anti-Powers in Infinite Words



Abelian Anti-Powers

Conjecture

Every infinite word contains abelian powers of any order or abelian
anti-powers of any order.

An infinite word may contain both abelian powers of any order and
abelian anti-powers of any order. This is the case, for example, of any
word with full factor complexity.

A uniformly recurrent example is given by the regular paperfolding word

p = 00100110001101100010011100110110 · · ·

Proposition (G.F., M. Postic, M. Silva)

The regular paperfolding word p contains abelian powers of any order and
abelian anti-powers of any order.

The fact that p contains abelian powers of any order was proved in 2013
by Štěpán Holub (J. Combin. Theory Ser. A, 120).
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Algorithms

It might be useful to be able to locate efficiently anti-power factors in a
finite word. For this, we proved the following

Theorem (G. Badkobeh, G.F., S. Puglisi, 2018)

Given a word w of length n and an integer k > 1, there is an O(n2/k)
time and O(n) space algorithm that locates all the factors of w that are
k-anti-powers.
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Algorithms

The algorithm is clearly optimal in the case of an unbounded alphabet
(think of a word made by all-distinct letters). What can we say in the
case of a finite alphabet?

For every positive integer m, we let wm denote the word obtained by
concatenating the binary expansions of integers from 0 to m followed by
a symbol $. So for example

w5 = 0$1$10$11$100$101$

We have that |wm| = Θ(m logm). Let us write n = |wm|.

Lemma

Every word wm of length n contains Ω(n
2

k ) anti-powers of order k.

So our algorithm is optimal even for finite alphabets.
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Conclusions

We introduced the notion of an anti-power, and proved that
containing powers of any order or anti-powers of any order is a new
unavoidable regularity for infinite words.

We think there is space for extensions of our results to other
problems in combinatorics on words.

More generally, we think that our approach may be worth to be
considered for other combinatorial structures.

We provided an optimal algorithm to locate anti-powers in a finite
word. We think there are other interesting algorithmic questions
related to anti-powers.

G. Fici Anti-Powers in Infinite Words



Conclusions

We introduced the notion of an anti-power, and proved that
containing powers of any order or anti-powers of any order is a new
unavoidable regularity for infinite words.

We think there is space for extensions of our results to other
problems in combinatorics on words.

More generally, we think that our approach may be worth to be
considered for other combinatorial structures.

We provided an optimal algorithm to locate anti-powers in a finite
word. We think there are other interesting algorithmic questions
related to anti-powers.

G. Fici Anti-Powers in Infinite Words



Conclusions

We introduced the notion of an anti-power, and proved that
containing powers of any order or anti-powers of any order is a new
unavoidable regularity for infinite words.

We think there is space for extensions of our results to other
problems in combinatorics on words.

More generally, we think that our approach may be worth to be
considered for other combinatorial structures.

We provided an optimal algorithm to locate anti-powers in a finite
word. We think there are other interesting algorithmic questions
related to anti-powers.

G. Fici Anti-Powers in Infinite Words



Conclusions

We introduced the notion of an anti-power, and proved that
containing powers of any order or anti-powers of any order is a new
unavoidable regularity for infinite words.

We think there is space for extensions of our results to other
problems in combinatorics on words.

More generally, we think that our approach may be worth to be
considered for other combinatorial structures.

We provided an optimal algorithm to locate anti-powers in a finite
word. We think there are other interesting algorithmic questions
related to anti-powers.

G. Fici Anti-Powers in Infinite Words



References

G. Fici, A. Restivo, M. Silva, L. Zamboni:
Anti-Powers in Infinite Words
Journal of Combinatorial Theory, Series A, to appear
(Preliminary version in ICALP 2016)

G. Badkobeh, G. Fici, S. Puglisi:
Algorithms for Anti-Powers in Strings
Information Processing Letters, to appear

G. Fici Anti-Powers in Infinite Words



Thank you

G. Fici Anti-Powers in Infinite Words


