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Introduction

What are word-representations of graphs?

I A way to represent certain graphs G = (V ,E ) by a word on
the alphabet V .

I An alternation between the letters i and j in the word
corresponds to an edge (i , j) in the graph.

I G (w) is the graph generated by considering all possible
alternations in w .

I If G (w) = G for some word w , then w is said to be a
word-representation or word-representant of the graph G .
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Figure: G (w) for w = bcabadc.
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Word-Representations

Does every graph G have a word-representation?

Unfortunately, no.

Theorem (Halldorsson, Kitaev, Pyatkin)

A graph is word-representable iff it admits a semi-transitive ori-
entation.

I But, some very important and well-known classes of graphs -
the circle graphs, transitively orientable graphs, and graphs of
vertex degree at most 3 - are all word-representable.

I Also, asymptotically, a large number of graphs are
word-representable!

Theorem (Collins, Kitaev)

The number of n-vertex word-representable graphs is 2
n2
3 +o(n2).
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Word-Representations

Are word-representations unique?
I Nope.

I Given a word w , the reversed word wR also generates the
same graph.

I In general, a graph can have many word-representations.

Theorem (Kitaev et al.)

Every word-representable graph has a k-uniform word-
representation.

I In a k-uniform word, every letter occurs exactly k times.
I The minimal such k is the graph’s representation number.
I We focus on only the 2-uniform word-representations,

henceforth.
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Cycle Graphs

I Consider the cycle graph Cn labelled 1, 2...n in the clockwise
direction, where n > 3.

I Note that vertices k and k + 1 are connected for each
k ∈ {1, 2, ...n − 1}, and the edge from n to 1 completes the
cycle.

The fundamental word

Define the word wn, on the alphabet {1, 2...n}, by

wn = 1n21324354...(n − 1)(n − 2)n(n − 1).

It is easy to see that G (wn) = Cn for every n > 3. Our claim is
that from wn, we can ’obtain’ every word-representation of Cn.
We look at one last definition before going on to the proof.
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Circle Representations

Observation

If w ′ is the word obtained by a cyclic shift or a reflection of a
2-uniform word w , then G (w ′) = G (w).

Definition

I Represent a 2-uniform word w of length l on a circle,
labelled by the letter occurring at each position from 1 to l ,
clockwise.

I We can imagine joining the two points where a specific
letter repeats by a chord.

I Note that two letters alternate iff their corresponding
chords intersect.

We call this the circle representation of w .
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1
5

2

1

3
2

4

3

5

4

Figure: The circle representation of w5, with chords not shown, and the
start point as the topmost point. Each label represents the number at
the position. We can start at any of the 10 positions, and read in either
the clockwise or the anticlockwise direction, to get a total of 4× 5 = 20
distinct words.
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Main Theorem

Let w be any 2-uniform word that represents Cn labelled 1, 2, 3...n
for n > 3, and let w [i ] be the letter at position i for all 1 ≤ i ≤ 2n.

Then, the circle representation of w satisfies the following
property:

Lemma

For every r ∈ {1, 2, 3...n}, the two sets of positions,

Ur = {i : (w [i ]− r) > 1} and Lr = {i : (r − w [i ]) > 1},

if both are non-empty, lie entirely in one of the two segments
defined by the chord corresponding to r . If exactly one is non-
empty, then that set lies entirely in one of two segments.
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The Main Theorem - Visual
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Figure: Circle representation of w7 = 17213243546576, representing C7.
The chord corresponding to r = 4 has been drawn. The two sets of
points, Ur and Lr have been coloured in blue and red, respectively. Black
points belong to neither of the two sets.
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The Proof Idea - Visual
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The Graphcheck Algorithm - Preliminaries

Following on from the circle representation idea, we aim to obtain
an algorithm that will help us check if a given word 2-uniform word
w is a word-representation of a given graph G .

For this, we utilize a data structure that handles Dynamic Range
Sum Queries efficiently - the Fenwick Tree.

The Fenwick Tree (Tarjan et al.)

I Used to calculate prefix sums of an array - say, of length n.
I O(n) additional space.
I O(n log n) time initialization for an arbitrary array. (Here,

however, this will not be necessary.)
I O(log n) time for a point update.
I O(log n) for an arbitrary prefix sum.
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The Graphcheck Algorithm

Algorithm Details

I Input: 2-uniform word w on V , and graph G = (V ,E ).
I Result: Returns true if G (w) = G , and false otherwise.

Initialization

I Initialize FenwickTree with 0 in all positions with total
length w .length().

I Initialize array of positions pos[] to (NULL, NULL) for all
letters in w .

I edgecount = 0
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for k = 0 to w .length() −1 do
if pos[w [k]].first = NULL then

pos[w [k]].first = k
else

pos[w [k]].second = k

i = pos[w [k]].first
j = pos[w [k]].second

// add the number of unmarked nodes in w [i ...j ]
edgecount +=

j − i − FenwickTree.rangesum(i + 1, j − 1)− 1

// mark the positions i and j
FenwickTree.update(i , 1)
FenwickTree.update(j , 1)

end
end
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if edgecount 6= |E | then
return false

else
for edge (u, v) in E do

if u and v do not alternate then
return false ; // only a O(1) comparison

end
end
return true

end
Algorithm 1: GraphCheck
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Thank you!
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