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Recall that an integer sequence f is linear recurrent provided there is a d X d
square matrix A and d x 1 vectors u and v such that

f(n) =u’ A"v.

In the generalisation, one doesn’t consider the value of n specifically, but its
base-k expansion (n)g = is- - - ig.

In this setting, the sequence f is k-regular if and only if there exist d X d square
matrices Ag,...,Ar_1 and d X 1 vectors u and v such that

f(n) = ulA, v = uTAZ-S AV,

where w = 15 - - - 1 1S the word corresponding to the base-k expansion.
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Growth of k-regular sequences
We define the growth exponent of f, denoted GrExp(f), by

1
GrExp(f) := limsup =t |f(n)]
7, — OO logn
f(n)#0

The joint spectral radius of a finite set of matrices A = {Ag, A1,
denoted p(.A), is defined as the real number

/0(./4) — lim sup max HA’ioAil .. .Ain—l Hl/n

n—oo O<i07i1 7777 in—l gk—l

where || - || is any (submultiplicative) matrix norm.
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Growth of k-regular sequences
We define the growth exponent of f, denoted GrExp(f), by

1
GrExp(f) := limsup =t |f(n)]
7, — OO logn
f(n)#0

The joint spectral radius of a finite set of matrices A = {Ag, A1,..., Ar_1},
denoted p(A), is defined as the real number

p(A) = limsup max HA7;OA,,;1 Ay Hl/n ,

n—oo O<i07i1 7777 7:7’1,—1 <k_1

where || - || is any (submultiplicative) matrix norm.

Theorem. Let k > 1 and d > 1 be integers and f : Z>¢9 — K be a (not
eventually zero) k-reqular sequence. If Ay is any collection of k integer matrices
associated to a basis of the K-vector space (Kerp(f))x, then

log;, p(Ar) = GrExp(f),

where log, denotes the base-k logarithm.
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An example: Stern’s sequence

For example, the Stern sequence, {s(n)},>0 is given by s(0) =0, s(1) =1, and
when n > 1, by the pair of recurrences

s(2n) =s(n) and s(2n4+1)=s(n)+s(n+1).

These recurrences are determined by the matrix representation of the Stern

sequence, where
1 1 1 O
monr={(3 -4 9}



An example: Stern’s sequence

For example, the Stern sequence, {s(n)},>0 is given by s(0) =0, s(1) = 1, and
when n > 1, by the pair of recurrences

s(2n) =s(n) and s(2n4+1)=s(n)+s(n+1).

These recurrences are determined by the matrix representation of the Stern

sequence, where
1 1 1 O
monr={(3 -4 9}

THEOREM 1.1.  Let {a(n)},>¢ denote the Stern sequence. Then

a(n 3 log, ¢ , Alogy 3
lim Sup 1( ) = (—) — Y 0.9588541900 - - . |
n—0C N8 ¥ \/S 2
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Definition. A function F(z) € Z|z| is called a k-Mahler function provided
there are integers £ > 2 and d > 1 such that

d

ao(2)F(2) + a1(2)F (") + - + aq(2)F (2" ) =0,

for some polynomials ag(z),...,aq(z) € Z|z].
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Regular to Mahler

Definition. A function F(z) € Z|z| is called a k-Mahler function provided
there are integers £ > 2 and d > 1 such that

d

ao(2)F(2) + a1(2)F (") + - + aq(2)F (2" ) =0,

for some polynomials ag(z),...,aq(z) € Z|z].

Theorem. (Becker) If f(n) is a k-reqular sequence, then <. f(n)z" is a
k-Mahler function.

The function S(z) = (1/2) }_,>q s(n)z" satisfies the 2-Mahler equation

S(z) = 1+ 2z +27)8(2%).



A transcendence test for Mahler functions

Let £k > 2 and d > 1 be integers and F'(z) be a k-Mahler function converging
inside the unit disc satisfying

ao(2)F(2) + a1(2)F(2%) + - - - + aq(z)F(2*") = 0,

for polynomials ag(z2),...,aq(z) € Clz]|. Set a; := a;(1) and form the
polynomial
pE(A) == aoA? +a X+ ag N+ ay.

If agpag # 0 and pr () has distinct roots, then the function F(z) is
transcendental over C(z) provided

e p(k™)# 0 for alln € Z or

e the eigenvalue \p # k™ for any n € Z.

If A\p = k™ for some n € 7Z, the test is inconclusive.
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Radial asymptotics of Mahler functions

Theorem. Let F(z) be a k-Mahler function whose characteristic polynomial
pr(A) has distinct roots. Then there is an eigenvalue A\p with pp(Ap) = 0, such

that as z — 1~
C(z)

(1 _ Z)logk AF

F(z) = (1 +0(1)),
where log, denotes the principal value of the base-k logarithm and C(z) is a
real-analytic nonzero oscillatory term, which on the interval (0,1) is bounded

away from 0 and oo, and satisfies C(z) = C(2%).

Questions about the asymptotic behaviour of Mahler functions are quite classi-
cal, and some special cases of the theorem above are known. See, e.g., Mahler
(1940), de Bruijn (1948), Dumas (1993), Dumas and Flajolet (1996), and most
recently Brent, Coons, and Zudilin (2015).
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T

Mahler functions are coordinates of a vector F(z) := [Fi(2),..., Fq(z)]" such

that there is a matrix of rational functions A(z) such that

For every n, we have F(z) = A(2)A(z") - -- A(zkn_l) F(z*").
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Properties via matrix cocycles

Mahler functions are coordinates of a vector F(2) := [Fi(2),..., Fy(2)]! such
that there is a matrix of rational functions A(z) such that

For every n, we have F(z) = A(2)A(z") - -- A(zkn_l) F(z*").

-~

matrix cocycle

Properties of this cocycle can give you:
e transcendence results
e algebraic independence results

e irrationality measures
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Definition. Let £ be a real number. The irrationality exponent u(§) is defined
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Definition. Let £ be a real number. The irrationality exponent u(§) is defined
as the supremum of the set of real numbers 1 such that the inequality

1
|§'_Z_?|<_
q q"

has infinitely many solutions (p,q) € Z x N.

Theorem (Dirichlet 1842). Let & be a real number. If un(&) < 2, then pu(§) =
1. Moreover, all number & with u(§) =1 are rational.
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Approximation by rationals

Definition. Let £ be a real number. The irrationality exponent u(§) is defined
as the supremum of the set of real numbers 1 such that the inequality

has infinitely many solutions (p,q) € Z x N.

Theorem (Dirichlet 1842). Let £ be a real number. If u(§) < 2, then u(§) =
1. Moreover, all number & with u(§) =1 are rational.

Theorem (Liouville 1844). If £ is algebraic of degree d, then u(§) < d.

THEOREM 1.1. A Mahler number cannot be a Liouville nuimber.



Mahler measure and possible gaps



Mahler measure and possible gaps

Definition. Let p(z) = ao[],_o(z — ;) € C[z]. The (logarithmic) Mahler
measure of p(z) is given by

m(p) := log |ag| + Zlog(maxﬂozi\, 1}).
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Mahler measure and possible gaps

Definition. Let p(z) = ao[],_o(z — ;) € C[z]. The (logarithmic) Mahler
measure of p(z) is given by

m(p) := log |ag| + Zlog(maxﬂozi\, 1}).
i=0

1
Note also Jensen’s formula m(p) := / log |p(e*™)|dt.
0
Lehmer found m(1 4+ 2z — 2% — 2% — 2° — 2% — 27 + 2% + 219) =~ log(1.176281).

Lehmer’s problem. Does there exist a constant ¢ > 0 such that any irreducible
non-cyclotomic polynomial p with integer coefficients satisfies m(p) > ¢ 7
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Boyd’s observation and height-one polynomials

Lehmer’s problem. Does there exist a constant ¢ > 0 such that any irreducible
non-cyclotomic polynomial p with integer coefficients satisfies m(p) > ¢ ?

For any integer polynomial p with m(p) < log(2) there is an integer polynomial
g such that pq has height 1.

Boyd observed that, in his experience, such a g can be taken to be cyclotomic
and of fairly small degree relative to the degree of p.

In this talk I want to show you that Lehmer’s problem,
restricted to height-one polynomials,
is a property of a matrix cocycle associated to a 2-automatic sequence.
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Fourier matrix of a 2-automatic sequence

Definition. A 2-automatic sequence ¢ is defined on Y5 := {0,1} by

)
0 — w,
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where w, and w; are finite words over X5 of equal length |w,| = |w,| = L > 2.
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Fourier matrix of a 2-automatic sequence

Definition. A 2-automatic sequence ¢ is defined on Y5 := {0,1} by

(0 W
0: 4
\1 — Wy ,
where w, and w; are finite words over X5 of equal length |w,| = |w,| = L > 2.

All sequences will be assumed to be primitive and apertodic.

For 0 <¢,7 < 1, let T;; be the set of all positions m where the letter ¢+ appears
in w;, and let T := (13,)o<i j<1 be the resulting 2 x 2-matrix.

Note that the substitution matrix M,, satisfies M, = (Card(Tij))Oq e

Definition. Using 1", we build a matrix of pure point measures 0, = (5Tij )o<i.i<1;

where dg := ) o0, with d, = 0. This gives rise to an analytic matrix-valued
function via

—

B(k) - = 5T(k)7

which we call the Fourier matrixz of po.
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Example. Consider the Thue—Morse substitution, as given by

. 0— 01
OT™ "\ 1 0.

Here, one has Ty = (?ﬁ }(1){ ), which gives

B 50 51 - 1 627r72k
5TTM — (51 5()) and  Bry (k) = (627m'k 1 )



Two paradigmatic examples

Example. Consider the Thue—Morse substitution, as given by

. 0— 01
OT™ "\ 1 0.

Here, one has Ty = (?ﬁ %{ ), which gives

B 50 51 B 1 627r7;k
5TTM — (51 5()) and By (k) = (627m'k 1 )

Example. On the other hand, for the period doubling substitution,

. 0— 01
pd Y 1 00,

the corresponding matrices are 1 ; = (?ﬁ {Oél}) together with

0y Og+0 1 14 ek
Op,, = (5(3 ’ 0 1) and  Bq(k) = (627m'k 0 )
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Lyapunov exponents and Fourier cocycles

We use the ergodic transtormation & — Lk mod 1 defined on the 1-torus and
the Fourier matrix to build the matrix cocycle

B™ (k) := B(k)B(Lk)--- B(L" k).

The inverse cocycle (B{™ (k))~! exists for almost all £ € R, because det B(k) = 0
for at most a countable subset of R.

e If v € C? is any (fixed) row vector, the values

1
B (v, k) = lim ~ log [vB™ (k)|

n—oo 1
exist for almost every k € R and are constant on a set of tull measure.
e As a function of v, they take at most two values in this case.

e A vector v from the Oseledec subspace V;.1 1\ V; satisfies the property that,
for almost every k € R, the norm |[vB™ (k)|| grows like e"Xit1 as n — 00.



e For invertible cocycles, these exponents have v-independent forms

.1 .
Ximas (k) i= nll_)H;OglogHB( )(k)H and
Xin(k) = = lim_ = logl| (B (k) |

n—oo N,
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e For invertible cocycles, these exponents have v-independent forms

1 .
Xima(F) = Jim 2 log| B (k)] and
B (k) = — lim ~ (m) ()}~
Xinin () = — Tim —log||(B™ (k) |

e These values are independent of the norm.
e This means that we are dealing with two numbers, x5, and x2, .

e Lyapunov regularity guarantees for almost every k£ € R that

VB (k) +XBo (k) = lim — log|det (B™ (k))].

n—oo N

Theorem (Baake, C. and Manibo). For any primitive, 2-automatic se-
quence p, the extremal Lyapunov exponents are explicitly given by

Xflin =0 and Xﬁax — m(Q - R)?

with () and R defined in the next lemma.
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Lemma. Consider the sets

Pa::{m\Cm:[(l’]} and Pb::{m\C’m:[%]},

2mk

which collect bijective positions of equal type. Further, let z = e and set

P P

Q(z) := dp, (k) and R(z) := dp, (k).

Then, det(B(k)) = p.(z) - (@ — R)(2), where py(z) =1+ z+4 ...+ 271

Proof. Similar to the definitions of @ and R above, define Py := {m | C,, = [}]}
and P, :={m | C,, =[1]}, and let

—

SO(Z) = 5p

0

(k) and Si(z) := 5/];1(]{)

In general, the Fourier matrix of o satisfies

_ ((So+Q)(2) (Sy+ R)(2) with » — 27k
Bk) = ((51+R)(z) (51+Q)(z)> thz =™

Since there are only four distinct column types, we see that S,+5;+Q+R = pr.
One can now verify the lemma by direct computation.
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Main result

Theorem (Baake, C. and Manibo). For any primitive, 2-automatic se-
quence p, the extremal Lyapunov exponents are explicitly given by

Xflin =0 and Xflax — m(Q - R)?

with () and R defined in the previous lemma.

Proof. By the ergodic theorem, multiplicativity of the determinant, and addi-
tivity of the logarithm, for almost every k € R

VB (k) + X2 (k) = lim — log|det (B™ (k)|

n—oo M,
1
— /O log|(Q — R)(e*™")|dt = m(Q — R).

The row vector (1,1) is a left eigenvector of B(k), for all k, with eigenvalue
pr (e*™%). Hence, we get one of the exponents to be xf = m(p;) = 0. From
the sum above, and from the non-negativity of the Mahler measure, we then get
that the exponent corresponding to this invariant subspace is the minimal one,

x? = x5, , the other being x2. =m(Q — R). O
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Important point

lim log|det(B(k)B(Lk)--- B(L" 'k))| = m(Q — R).
D e —

n—o00 N,

matrix cocycle

There is a massive amount of structure to the matrix B(k).

(S +Q)() (Sy+R)(
Blk) = <<51 FR)(2) (S, +Q)(2)

A\
N——"
N—
=
i ©
—
-
I\
|
Q)
(\V)
=
7

e One can easily bound heights
e bound degrees of the entries,

e and see how they are related.
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Example: Littlewood polynomials and bijective morphisms

Definition. A polynomial gq(z) = > "¢, 2™ of degree n — 1 with coefficients

m=0 "m

cm € {—1,1} is called a Littlewood polynomial of order n — 1.

Let C,,, be the m*" column of p, and starting with ¢(z), we choose C,, to be

1,
_1’

Co— |, ife,,

|, ife,,

and we build the morphism by looking at the concatenation CyC;---C; _;.

There are only two possible column types present, so P,UP, ={0,1,...,L—1},
and also that the resulting morphism p must be bijective.



Example: Littlewood polynomials and bijective morphisms

Definition. A polynomial gq(z) = > "¢, 2™ of degree n — 1 with coefficients

m=0 "m

cm € {—1,1} is called a Littlewood polynomial of order n — 1.

Let C,,, be the m*" column of p, and starting with ¢(z), we choose C,, to be

1,
_1’

Co— |, ife,,

|, ife,,

and we build the morphism by looking at the concatenation CyC;---C; _;.

There are only two possible column types present, so P,UP, ={0,1,...,L—1},
and also that the resulting morphism p must be bijective.

By construction, we have
Xflax — m(Q — R) — m(g) and B(k) — <QREZ§ ggzg) N 627‘("1:]{2.

<



The substitution corresponding to ¢ = () — R is essentially unique, up to the
obvious freedom that emerges from the relation m(—¢q) = m(q), that is, from
changing all signs. This is the case precisely because a given sequence of signs
uniquely specifies the columns of p. For example, let us consider the polynomial

glz)i=—1—z+z22—2° F2°
whence we get the substitutions

(0 — 11010 (0 — 00101

D < and PR
% 1 00101 HE O 1 11010

with associated Fourier matrices

647Tik 1 687m'k 1 4 627m'k 1 667rik 0 1
By(k) = <1 4 e2mik 4 6mik glmik | o8mik and B_,(k) = By(k).

Both induce a cocycle whose maximum Lyapunov exponent is

B = m(q) ~ 0.656256

XmaX



Example: Newman polynomials and choices



Example: Newman polynomials and choices

For the class of {0, 1}-polynomials, also known as Newman polynomzials, one has
R = 0. The associated Fourier matrix is

_ {((Sg+Q)(2) So(2) with » — 2Tk
o = (&Y (52 Gm) me-e

which leads to x2.. = m(Q).
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R = 0. The associated Fourier matrix is

_ {((Sg+Q)(2) So(2) with » — 2Tk
o = (&Y (52 Gm) me-e

which leads to x2.. = m(Q).

If either S, or S5, is zero, M, = B(0) is a triangular matrix, and cannot be prim-
itive. This can be avoided if there are at least two columns with a coincidence.



Example: Newman polynomials and choices

For the class of {0, 1}-polynomials, also known as Newman polynomzials, one has
R = 0. The associated Fourier matrix is

_ {((Sg+Q)(2) So(2) with » — 2Tk
o = (&Y (52 Gm) me-e

which leads to x_,, = m(Q).

If either S, or S5, is zero, M, = B(0) is a triangular matrix, and cannot be prim-
itive. This can be avoided if there are at least two columns with a coincidence.

If there is only one such column, one can still construct a primitive substitution
by recalling that m(—¢q) = m(q), so one only needs to exchange the two bijective
column types.



As a concrete example, consider ¢(z) = 1 + 2?. The two standard choices

(0 — 000 (0 — 010

. and T
% 15 101 % 1 111

both give non-primitive substitutions; in fact, their substitution matrices are
not even irreducible. However,

(0 — 101 (01— 111

IR and PR
=g 1 000 =g 1010

are both primitive and aperiodic, and have x2.. = m(g). One can see in this
example that replacing g by —q really means an exchange of w, and w; in the
definition of p.
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Recall further that ¢; is the polynomial with the smallest known positive loga-
rithmic Mahler measure, m(¢; ) ~ log(1.176281). Here,

(0— 00111111000

Op. * 9
= \1 — 11100000011

is one of the eight substitutions that correspond to the polynomial /; .



Lehmer’s polynomial, morphism, and dynamical analogue
=il — ) — i = = =

Recall further that ¢; is the polynomial with the smallest known positive loga-
rithmic Mahler measure, m(¢; ) ~ log(1.176281). Here,

(0— 00111111000

Op * <
= \1 — 11100000011

is one of the eight substitutions that correspond to the polynomial /; .

Lehmer’s problem (dynamical analogue). Does there exist a primitive,
2-automatic sequence p with maximal Lyapunov exponent

0<xB. < m(l)~log(1.176280818) ?



End (fin)



