
2-automatic sequences,
Lyapunov exponents and a
dynamical analogue of
Lehmer’s Mahler measure problem

Michael Coons
University of Newcastle, Australia



k-regular sequences



Recall that an integer sequence f is linear recurrent provided there is a d ⇥ d
square matrix A and d⇥ 1 vectors u and v such that

f(n) = uTAnv.

In the generalisation, one doesn’t consider the value of n specifically, but its
base-k expansion (n)k = is · · · i0.

k-regular sequences



In this setting, the sequence f is k-regular if and only if there exist d⇥ d square
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Growth of k-regular sequences



We define the growth exponent of f , denoted GrExp(f), by

GrExp(f) := lim sup
n!1
f(n) 6=0

log |f(n)|
log n

.

The joint spectral radius of a finite set of matrices A = {A0,A1, . . . ,Ak�1},
denoted ⇢(A), is defined as the real number

⇢(A) = lim sup
n!1

max
06i0,i1,...,in�16k�1

��Ai0Ai1 · · ·Ain�1

��1/n ,

where k · k is any (submultiplicative) matrix norm.
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where k · k is any (submultiplicative) matrix norm.

Theorem. Let k > 1 and d > 1 be integers and f : Z>0 ! K be a (not
eventually zero) k-regular sequence. If Af is any collection of k integer matrices
associated to a basis of the K-vector space hKerk(f)iK, then

logk ⇢(Af ) = GrExp(f),

where logk denotes the base-k logarithm.
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An example: Stern’s sequence



For example, the Stern sequence, {s(n)}n>0 is given by s(0) = 0, s(1) = 1, and
when n > 1, by the pair of recurrences

s(2n) = s(n) and s(2n+ 1) = s(n) + s(n+ 1).

These recurrences are determined by the matrix representation of the Stern
sequence, where

{A0,A1} =

⇢✓
1 1
0 1

◆
,

✓
1 0
1 1

◆�
.
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Definition. A function F (z) 2 Z[z] is called a k-Mahler function provided
there are integers k > 2 and d > 1 such that

a0(z)F (z) + a1(z)F (zk) + · · ·+ ad(z)F (zk
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Definition. A function F (z) 2 Z[z] is called a k-Mahler function provided
there are integers k > 2 and d > 1 such that

a0(z)F (z) + a1(z)F (zk) + · · ·+ ad(z)F (zk
d

) = 0,

for some polynomials a0(z), . . . , ad(z) 2 Z[z].

Theorem. (Becker) If f(n) is a k-regular sequence, then
P

n>0 f(n)z
n is a

k-Mahler function.

The function S(z) = (1/z)
P

n>0 s(n)z
n satisfies the 2-Mahler equation

S(z) = (1 + z + z2)S(z2).



A transcendence test for Mahler functions

Let k > 2 and d > 1 be integers and F (z) be a k-Mahler function converging
inside the unit disc satisfying

a0(z)F (z) + a1(z)F (zk) + · · ·+ ad(z)F (zk
d

) = 0,

for polynomials a0(z), . . . , ad(z) 2 C[z]. Set ai := ai(1) and form the
polynomial

pF (�) := a0�
d + a1�

d�1 + · · ·+ ad�1�+ ad.

If a0ad 6= 0 and pF (�) has distinct roots, then the function F (z) is
transcendental over C(z) provided

• p(kn) 6= 0 for all n 2 Z or

• the eigenvalue �F 6= kn for any n 2 Z.

If �F = kn for some n 2 Z, the test is inconclusive.



Radial asymptotics of Mahler functions



Theorem. Let F (z) be a k-Mahler function whose characteristic polynomial
pF (�) has distinct roots. Then there is an eigenvalue �F with pF (�F ) = 0, such
that as z ! 1�

F (z) =
C(z)

(1� z)logk �F
(1 + o(1)),

where logk denotes the principal value of the base-k logarithm and C(z) is a
real-analytic nonzero oscillatory term, which on the interval (0, 1) is bounded
away from 0 and 1, and satisfies C(z) = C(zk).

Questions about the asymptotic behaviour of Mahler functions are quite classi-
cal, and some special cases of the theorem above are known. See, e.g., Mahler
(1940), de Bruijn (1948), Dumas (1993), Dumas and Flajolet (1996), and most
recently Brent, Coons, and Zudilin (2015).

Radial asymptotics of Mahler functions
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Mahler functions are coordinates of a vector F(z) := [F1(z), . . . , Fd(z)]T such
that there is a matrix of rational functions A(z) such that
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Properties via matrix cocycles

Mahler functions are coordinates of a vector F(z) := [F1(z), . . . , Fd(z)]T such
that there is a matrix of rational functions A(z) such that

F(z) = A(z)F(zk).

Properties of this cocycle can give you:

• transcendence results

• algebraic independence results

• irrationality measures

For every n, we have F(z) = A(z)A(zk) · · ·A(zk
n�1

)| {z }
matrix cocycle

F(zk
n

).
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Lehmer’s problem. Does there exist a constant c > 0 such that any irreducible
non-cyclotomic polynomial p with integer coe�cients satisfies m(p) > c ?

Boyd’s observation and height-one polynomials

For any integer polynomial p with m(p) < log(2) there is an integer polynomial
q such that pq has height 1.

Boyd observed that, in his experience, such a q can be taken to be cyclotomic
and of fairly small degree relative to the degree of p.

In this talk I want to show you that Lehmer’s problem,
restricted to height-one polynomials,
is a property of a matrix cocycle associated to a 2-automatic sequence.
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Definition. A 2-automatic sequence % is defined on ⌃2 := {0, 1} by

% :
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Definition. A 2-automatic sequence % is defined on ⌃2 := {0, 1} by

% :

(
0 7! w0

1 7! w1 ,

where w0 and w1 are finite words over ⌃2 of equal length |w0| = |w1| = L > 2.

All sequences will be assumed to be primitive and aperiodic.

For 0 6 i, j 6 1, let Tij be the set of all positions m where the letter i appears
in wj , and let T := (Tij)06i,j61 be the resulting 2⇥2-matrix.

Note that the substitution matrix M%, satisfies M% =
�
card(Tij)

�
06i,j61

.

Definition. Using T , we build a matrix of pure point measures �T = (�Tij
)06i,j61,

where �S :=
P

x2S �x with �? = 0. This gives rise to an analytic matrix-valued
function via

B(k) := c�T (k),

which we call the Fourier matrix of %.

Fourier matrix of a 2-automatic sequence
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Example. Consider the Thue–Morse substitution, as given by

%TM :

(
0 7! 01

1 7! 10.

Here, one has TTM =

⇣
{0} {1}
{1} {0}

⌘
, which gives

�TTM
=

✓
�0 �1
�1 �0

◆
and BTM(k) =

✓
1 e2⇡ik

e2⇡ik 1

◆
.
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(
0 7! 01
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⇣
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Example. On the other hand, for the period doubling substitution,

%pd :

(
0 7! 01

1 7! 00,

the corresponding matrices are Tpd =

⇣
{0} {0,1}
{1} ?

⌘
together with

�Tpd
=

✓
�0 �0 + �1
�1 0

◆
and Bpd(k) =

✓
1 1 + e2⇡ik

e2⇡ik 0

◆
.

Two paradigmatic examples



Lyapunov exponents and Fourier cocycles



We use the ergodic transformation k 7! Lk mod 1 defined on the 1-torus and
the Fourier matrix to build the matrix cocycle

B(n)(k) := B(k)B(Lk) · · ·B(Ln�1k).
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for at most a countable subset of R.

• If v 2 C2 is any (fixed) row vector, the values

�B(v, k) := lim
n!1

1

n
log kvB(n)(k)k

exist for almost every k 2 R and are constant on a set of full measure.

• As a function of v, they take at most two values in this case.

• A vector v from the Oseledec subspace Vi+1\Vi satisfies the property that,

for almost every k 2 R, the norm kvB(n)
(k)k grows like en�

B
i+1 as n ! 1.

Lyapunov exponents and Fourier cocycles
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Theorem (Baake, C. and Mañibo). For any primitive, 2-automatic se-
quence %, the extremal Lyapunov exponents are explicitly given by

�B
min = 0 and �B

max = m(Q�R),

with Q and R defined in the next lemma.
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m | Cm = [ 10 ]

 
,

which collect bijective positions of equal type. Further, let z = e2⇡ik and set

Q(z) := c�Pa(k) and R(z) := c�Pb(k).

Then, det
�
B(k)

�
= pL(z) ·

�
Q�R

�
(z), where pL(z) = 1 + z + . . .+ zL�1.

Proof. Similar to the definitions of Q and R above, define P0 := {m | Cm = [ 00 ]}
and P1 := {m | Cm = [ 11 ]} , and let

S0(z) := c�P0(k) and S1(z) := c�P1(k).

In general, the Fourier matrix of % satisfies

B(k) =

✓�
S0 +Q

�
(z)

�
S0 +R

�
(z)�

S1 +R
�
(z)

�
S1 +Q

�
(z)

◆
with z = e2⇡ik.

Since there are only four distinct column types, we see that S0+S1+Q+R = pL.
One can now verify the lemma by direct computation. ⇤
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log
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=

Z 1

0
log

��(Q�R)
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���dt = m(Q�R).

The row vector (1, 1) is a left eigenvector of B(k), for all k, with eigenvalue

pL
�
e2⇡ik

�
. Hence, we get one of the exponents to be �B

1 = m(pL) = 0. From

the sum above, and from the non-negativity of the Mahler measure, we then get

that the exponent corresponding to this invariant subspace is the minimal one,

�B
1 = �B

min, the other being �B
max = m(Q�R). ⇤



Important point
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n!1

1

n
log

��det
�
B(k)B(Lk) · · ·B(Ln�1k)| {z }

matrix cocycle

��� = m(Q�R).
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matrix cocycle

��� = m(Q�R).

Important point

There is a massive amount of structure to the matrix B(k).



lim
n!1

1

n
log

��det
�
B(k)B(Lk) · · ·B(Ln�1k)| {z }

matrix cocycle

��� = m(Q�R).

Important point

There is a massive amount of structure to the matrix B(k).

B(k) =

✓�
S0 +Q

�
(z)

�
S0 +R

�
(z)�

S1 +R
�
(z)

�
S1 +Q

�
(z)

◆
with z = e2⇡ik.



lim
n!1

1

n
log

��det
�
B(k)B(Lk) · · ·B(Ln�1k)| {z }

matrix cocycle

��� = m(Q�R).

Important point

There is a massive amount of structure to the matrix B(k).

B(k) =

✓�
S0 +Q

�
(z)

�
S0 +R

�
(z)�

S1 +R
�
(z)

�
S1 +Q

�
(z)

◆
with z = e2⇡ik.

• One can easily bound heights

• bound degrees of the entries,

• and see how they are related.



Example: Littlewood polynomials and bijective morphisms



Definition. A polynomial q(z) =
Pn�1

m=0 cmzm of degree n� 1 with coe�cients
cm 2 {�1, 1} is called a Littlewood polynomial of order n� 1.

Example: Littlewood polynomials and bijective morphisms



Definition. A polynomial q(z) =
Pn�1

m=0 cmzm of degree n� 1 with coe�cients
cm 2 {�1, 1} is called a Littlewood polynomial of order n� 1.

Example: Littlewood polynomials and bijective morphisms

Let Cm be the mth column of %, and starting with q(z), we choose Cm to be

Cm =

(
[ 01 ], if cm = 1,

[ 10 ], if cm = �1,

and we build the morphism by looking at the concatenation C0 C1· · · CL�1.
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Example: Littlewood polynomials and bijective morphisms

Let Cm be the mth column of %, and starting with q(z), we choose Cm to be

Cm =

(
[ 01 ], if cm = 1,

[ 10 ], if cm = �1,

and we build the morphism by looking at the concatenation C0 C1· · · CL�1.

There are only two possible column types present, so Pa[Pb = {0, 1, . . . , L�1},
and also that the resulting morphism % must be bijective.



Definition. A polynomial q(z) =
Pn�1

m=0 cmzm of degree n� 1 with coe�cients
cm 2 {�1, 1} is called a Littlewood polynomial of order n� 1.

Example: Littlewood polynomials and bijective morphisms

Let Cm be the mth column of %, and starting with q(z), we choose Cm to be

Cm =

(
[ 01 ], if cm = 1,

[ 10 ], if cm = �1,

and we build the morphism by looking at the concatenation C0 C1· · · CL�1.

There are only two possible column types present, so Pa[Pb = {0, 1, . . . , L�1},
and also that the resulting morphism % must be bijective.

By construction, we have

�B
max = m(Q�R) = m(q) and B(k) =

✓
Q(z) R(z)
R(z) Q(z)

◆
where z = e2⇡ik.



The substitution corresponding to q = Q � R is essentially unique, up to the
obvious freedom that emerges from the relation m(�q) = m(q), that is, from
changing all signs. This is the case precisely because a given sequence of signs
uniquely specifies the columns of %. For example, let us consider the polynomial

q(z) = �1� z + z2 � z3 + z4,

whence we get the substitutions

%q :

(
0 7! 11010

1 7! 00101
and %�q :

(
0 7! 00101

1 7! 11010

with associated Fourier matrices

Bq(k) =

✓
e4⇡ik + e8⇡ik 1 + e2⇡ik + e6⇡ik

1 + e2⇡ik + e6⇡ik e4⇡ik + e8⇡ik

◆
and B�q(k) =

✓
0 1
1 0

◆
Bq(k).

Both induce a cocycle whose maximum Lyapunov exponent is

�B
max = m(q) ⇡ 0.656256



Example: Newman polynomials and choices



Example: Newman polynomials and choices

For the class of {0, 1}-polynomials, also known as Newman polynomials, one has
R = 0. The associated Fourier matrix is

B(k) =

✓�
S0 +Q

�
(z) S0(z)

S1(z)
�
S1 +Q

�
(z)

◆
with z = e2⇡ik,

which leads to �B
max = m(Q).
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�
(z)

◆
with z = e2⇡ik,

which leads to �B
max = m(Q).

If either S0 or S1 is zero, M% = B(0) is a triangular matrix, and cannot be prim-
itive. This can be avoided if there are at least two columns with a coincidence.



Example: Newman polynomials and choices

For the class of {0, 1}-polynomials, also known as Newman polynomials, one has
R = 0. The associated Fourier matrix is

B(k) =

✓�
S0 +Q

�
(z) S0(z)

S1(z)
�
S1 +Q

�
(z)

◆
with z = e2⇡ik,

which leads to �B
max = m(Q).

If either S0 or S1 is zero, M% = B(0) is a triangular matrix, and cannot be prim-
itive. This can be avoided if there are at least two columns with a coincidence.

If there is only one such column, one can still construct a primitive substitution
by recalling that m(�q) = m(q), so one only needs to exchange the two bijective
column types.



As a concrete example, consider q(z) = 1 + z2. The two standard choices

%q :

(
0 7! 000

1 7! 101
and %q0 :

(
0 7! 010

1 7! 111

both give non-primitive substitutions; in fact, their substitution matrices are
not even irreducible. However,

%�q :

(
0 7! 101

1 7! 000
and %�q0 :

(
0 7! 111

1 7! 010

are both primitive and aperiodic, and have �B
max = m(q). One can see in this

example that replacing q by �q really means an exchange of w0 and w1 in the
definition of %.



Lehmer’s polynomial, morphism, and dynamical analogue



Lehmer’s polynomial, morphism, and dynamical analogue

`L(z) = 1 + z � z3 � z4 � z5 � z6 � z7 + z9 + z10



Lehmer’s polynomial, morphism, and dynamical analogue

Recall further that `L is the polynomial with the smallest known positive loga-

rithmic Mahler measure, m(`L) ⇡ log(1.176281). Here,

%`L :

(
0 7! 00111111000

1 7! 11100000011

is one of the eight substitutions that correspond to the polynomial `L.

`L(z) = 1 + z � z3 � z4 � z5 � z6 � z7 + z9 + z10



Lehmer’s polynomial, morphism, and dynamical analogue

Recall further that `L is the polynomial with the smallest known positive loga-

rithmic Mahler measure, m(`L) ⇡ log(1.176281). Here,

%`L :

(
0 7! 00111111000

1 7! 11100000011

is one of the eight substitutions that correspond to the polynomial `L.

`L(z) = 1 + z � z3 � z4 � z5 � z6 � z7 + z9 + z10

Lehmer’s problem (dynamical analogue). Does there exist a primitive,
2-automatic sequence % with maximal Lyapunov exponent

0 < �B
max < m(`L) ⇡ log(1.176280818) ?



End (fin)


